Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanisms of leptin resistance observed in most cases of human obesity are poorly understood. Therefore, we evaluated the effects of nitric oxide (NO) on the leptin-induced activation of Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathways and on the leptin receptor (LEPR) expression using SH-SY5Y cells. Here, we show that the NO donor spermine/NONOate inhibited leptin-induced activation of STAT3 in vitro. The inhibition of leptin-mediated STAT3 phosphorylation caused by excessive NO was partially prevented by a sulfhydryl reducing agent, ascorbic acid. Cellular experiments show that reduced expression of long form leptin receptor (LEPR-b) and STAT3 protein instability induced by NO may be mechanisms of the NO-mediated inhibition of leptin-STAT3 signaling. We also present data showing that the hypothalamic NO content of high-fat (HF)-diet-induced obese mice was higher than that of control mice; this is likely caused by decreased caveolin-1 expression and increased nNOS expression induced by HF diet over 19 weeks. Concurrently with the overproduction of NO, the decrease of hypothalamic LEPR-b in obese mice also supports these in vitro data. Combined results suggest that excess of NO can induce the attenuation of leptin-mediated STAT3 activation through reduced expression of LEPR-b mRNA and instability of STAT3 protein at least in part. Furthermore, our in vivo data indicate that long-term HF diet induces hypothalamic overproduction of NO, which may be related with leptin insensitivity. However, further study is required to warrant direct in vivo evidence of a causal relationship between endogenous excess of hypothalamic NO and central leptin resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2006.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!