A structural protein of hepatitis C virus (HCV) was expressed in monkey COS cells under the control of an exogenous promoter, and a protein of 22 kDa was identified by immunoblot analysis. This protein (p22), which was produced by processing in COS cells, reacted specifically to sera of chronic hepatitis C patients, and its coding region was mapped at the most amino-terminal part of the HCV polyprotein. These results suggested that the p22 protein is the nucleocapsid (core) protein of HCV. Moreover, the assay detecting antibody to p22 was found to be useful for early diagnosis of HCV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC240954PMC
http://dx.doi.org/10.1128/JVI.65.6.3015-3021.1991DOI Listing

Publication Analysis

Top Keywords

core protein
8
protein hepatitis
8
hepatitis virus
8
cos cells
8
protein
6
expression processed
4
processed core
4
virus mammalian
4
mammalian cells
4
cells structural
4

Similar Publications

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Bioinformatic identification of important roles of COL1A1 and TNFRSF12A in cartilage injury and osteoporosis.

J Int Soc Sports Nutr

December 2025

Jiujiang No.1 People's Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China.

Objective: The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease.

Methods: Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples.

View Article and Find Full Text PDF

Background And Aims: Chronic hepatitis D virus (HDV) infection can cause severe liver disease. With new treatment options available, it is important to identify patients at risk for liver-related complications. We aimed to investigate kinetics and predictive values of novel virological and immunological markers in the natural course of chronic HDV infection.

View Article and Find Full Text PDF

Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.

Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.

View Article and Find Full Text PDF

Background: Myocardial infarction represents a coronary artery ailment with the highest incidence and fatality rates among cardiovascular conditions. However, effective pharmacological interventions remain elusive. This study seeks to elucidate the molecular mechanisms underlying the effects of on myocardial infarction through network pharmacology and experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!