Effects of triptolide and TNF-alpha on the expression of VEGF in Raji cells and on angiogenesis in ECV304 cells.

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Published: October 2006

In order to study the relation of antitumour mechanisms of triptolide with neovascularization, the effect of triptolide and tumour necrosis factor (TNF)-alpha on the expression of vascular endothelial growth factor (VEGF) in Raji cell lines and their effect on angiogenesis in human umbilical vein endothelial cells (HUVECs)-derived cell line ECV304 were investigated. The inhibitory rate of cells treated by triptolide detected by MTT; the ELISA was employed to study the VEGF content secreted by Raji cell lines; angiogenesis was tested by network formation of endothelial cells on Matrigel, and the mRNA level of VEGF was measured by RT-PCR. The results showed that treatment of Raji cells with triptolide resulted in significantly enhanced antiproliferative effects in dose- and time-dependent manner. The content of VEGF secreted by Raji cells was increased by TNF-alpha and was suppressed by triptolide (P < 0.01). The mRNA expressions of VEGF(165) and VEGF(121) (containing 165 and 121 amino acid residues, respectively) could be detected in all fractions. TNF-alpha augmented the expression of VEGF(165) and VEGF(121) mRNA when triptolide reduced the expression (P < 0.01). No network and cord were formed in control and triptolide group. There was tube formation on matrigel in the supernatants of Raji culture group and the supernatants groups treated by VEGF and TNF-alpha in Raji cell. It is concluded that the expressions of VEGF in Raji cells are increased by TNF-alpha and suppressed by triptolide. VEGF and TNF-alpha induce angiogenesis and triptolide inhibits angiogenesis in ECV304 cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

raji cells
16
vegf raji
12
raji cell
12
cells
9
triptolide
9
tnf-alpha expression
8
vegf
8
raji
8
angiogenesis ecv304
8
ecv304 cells
8

Similar Publications

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical.

View Article and Find Full Text PDF

Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.

Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.

View Article and Find Full Text PDF

Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation.

J Immunother Cancer

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance.

Methods: This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Moringa oleifera has been traditionally used in Africa and Asia for its medicinal properties and this study explores its potential anti-leukemia effects through its leaf extracts.
  • The research involved treating leukemia cells with different concentrations of aqueous and ethanolic extracts and measuring cell viability, apoptosis, and gene expression.
  • Results indicated that these extracts were more effective on leukemia cells compared to healthy cells, highlighting the potential for Moringa extracts to be developed as a novel treatment for leukemia.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!