RGD-functionalized bioengineered spider dragline silk biomaterial.

Biomacromolecules

Department of Biomedical Engineering, Department of Chemistry, Bioengineering and Biotechnology Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA.

Published: November 2006

Spider silk fibers have remarkable mechanical properties that suggest the component proteins could be useful biopolymers for fabricating biomaterial scaffolds for tissue formation. Two bioengineered protein variants from the consensus sequence of the major component of dragline silk from Nephila clavipes were cloned and expressed to include RGD cell-binding domains. The engineered silks were characterized by CD and FTIR and showed structural transitions from random coil to insoluble beta-sheet upon treatment with methanol. The recombinant proteins were processed into films and fibers and successfully used as biomaterial matrixes to culture human bone marrow stromal cells induced to differentiate into bone-like tissue upon addition of osteogenic stimulants. The recombinant spider silk and the recombinant spider silk with RGD encoded into the protein both supported enhanced the differentiation of human bone marrow derived mesenchymal stem cells (hMSCs) to osteogenic outcomes when compared to tissue culture plastic. The recombinant spider silk protein without the RGD displayed enhanced bone related outcomes, measured by calcium deposition, when compared to the same protein with RGD. Based on comparisons to our prior studies with silkworm silks and RGD modifications, the current results illustrate the potential to bioengineer spider silk proteins into new biomaterial matrixes, while also highlighting the importance of subtle differences in silk sources and modes of presentation of RGD to cells in terms of tissue-specific outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm0607877DOI Listing

Publication Analysis

Top Keywords

spider silk
20
recombinant spider
12
silk
8
dragline silk
8
biomaterial matrixes
8
human bone
8
bone marrow
8
protein rgd
8
spider
6
rgd
6

Similar Publications

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF

Recent biotechnological advancements in protein production and development of biomimetic spinning procedures make artificial spider silk a promising alternative to petroleum-based fibers. To enhance the competitiveness of artificial silk in terms of mechanical properties, refining the spinning techniques is imperative. One potential strategy involves the integration of post-spin stretching, known to improve fiber strength and stiffness while potentially offering additional advantages.

View Article and Find Full Text PDF

High Absorption and Elasticity of a Novel Transgenic Silk with Egg Case Silk Protein from .

Int J Mol Sci

November 2024

College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.

Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have good hardness, can resist water, can protect spider eggs from external threats, have a significantly high initial modulus and high moisture absorption rate, and are expected to be used as a new generation of environmentally friendly natural polymer fibers and biomaterials. However, spiders are predatory and difficult to rear in large numbers, and it is also difficult to obtain spider egg case filaments in large quantities.

View Article and Find Full Text PDF

Conspecific cues mediate habitat selection and reproductive performance in a haplodiploid spider mite.

Curr Zool

December 2024

School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4472, New Zealand.

Selection of a suitable habitat by animals before settlement is critical for their survival and reproduction. In silk-spinning arthropods like spider mites, denser webs offer protection from predation and serve as a dispersal mode. Settling in habitats with the presence of conspecifics and silk webs can benefit the habitat-searching females.

View Article and Find Full Text PDF

This study aimed to investigate the characteristics of composite scaffolds that combine fibroin derived from spider silk and carboxymethyl cellulose (CMC) in the field of bone tissue engineering. Fibroin, obtained from spider silk, serves as a valuable biomaterial and constitutes the primary component of fibrous protein-based spider silk threads. To enhance the binding efficiency in bone formation after scaffold implantation, CMC was integrated into fibroin, aiming to improve the injectability properties of the scaffold in bone substitutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!