Candida antarctica lipase B-catalyzed synthesis of poly(butylene succinate): shorter chain building blocks also work.

Biomacromolecules

NSF I/UCRC for Biocatalysis and Bioprocessing of Macromolecules, Department of Chemical and Biological Sciences, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201, USA.

Published: November 2006

Lipase catalysis was successfully employed to synthesize high molecular weight poly(butylene succinate) (PBS). Attempts to copolymerize succinic acid with 1,4-butanediol were unsuccessful due to phase separation of the reactants. To circumvent this problem, monophasic reaction mixtures were prepared from diethyl succinate and 1,4-butanediol. The reactions were studied in bulk as well as in solution. Of the organic solvents evaluated, diphenyl ether was preferred, giving higher molecular weight products. After 24 h in diphenyl ether, polymerizations at 60, 70, 80, and 90 degrees C yielded PBS with M(n) of 2000, 4000, 8000, and 7000, respectively. Further increase in reaction time to 72 h resulted in little or no further increase in M(n). However, increasing the reaction time produced PBS with extraordinarily low M(w)/M(n) due to the diffusion and reaction between low-molecular weight oligomers and chains that occurs at a greater frequency than interchain transesterification. Time-course studies and visual observation of polymerizations at 80 degrees C revealed PBS precipitates at 5 to 10 h, limiting the growth of chains. To maintain a monophasic reaction mixture, the polymerization temperature was increased from 80 to 95 degrees C after 21 h. The result was an increase in the PBS molecular weight to M(w) = 38 000 (M(w)/M(n) = 1.39). This work paves the way for the synthesis of PBS macromers and polymers that contain variable quantities of monomers with chemically sensitive moieties (e.g., silicone, epoxy, vinyl). Furthermore, this study established the feasibility of using lipase catalysis to prepare polyesters from alpha,omega-linear aliphatic diethyl ester/diol monomers with less than six carbons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm060574hDOI Listing

Publication Analysis

Top Keywords

molecular weight
12
polybutylene succinate
8
lipase catalysis
8
monophasic reaction
8
diphenyl ether
8
polymerizations degrees
8
reaction time
8
pbs
6
reaction
5
candida antarctica
4

Similar Publications

Hyaluronic acid fillers rarely cause potentially devastating occlusive adverse events that require immediate hyaluronidase salvage infiltrations. An exploratory photographic investigation probed whether topical heparin's anticlotting and anti-inflammatory properties could synergize with and enhance the effectiveness of hyaluronidase. Based on heparin pharmacodynamics, the authors explored the rationale for associating topical heparins with hyaluronidase in treating occlusive side effects following accidental intra-arterial hyaluronic acid injections.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Purpose We aimed to report an innovative single-site endoscopic surgery for soft tissue lesions performed at our center. Methods All patients who underwent soft tissue surgery were reviewed. All consecutive patients who underwent single-site endoscopic surgery between September 2019 and March 2024 were included in the study.

View Article and Find Full Text PDF

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!