We present here the biological performance in supporting tissue regeneration of hybrid hydrogels consisting of genetically engineered protein polymers that carry specific features of the natural extracellular matrix, cross-linked with reactive poly(ethylene glycol) (PEG). Specifically, the protein polymers contain the cell adhesion motif RGD, which mediates integrin receptor binding, and degradation sites for plasmin and matrix-metalloproteinases, both being proteases implicated in natural matrix remodeling. Biochemical assays as well as in vitro cell culture experiments confirmed the ability of these protein-PEG hydrogels to promote specific cellular adhesion and to exhibit degradability by the target enzymes. Cell culture experiments demonstrated that proteolytic sensitivity and suitable mechanical properties were critical for three-dimensional cell migration inside these synthetic matrixes. In vivo, protein-PEG matrixes were tested as a carrier of bone morphogenetic protein (rhBMP-2) to heal critical-sized defects in a rat calvarial defect model. The results underscore the importance of fine-tuning material properties of provisional therapeutic matrixes to induce cellular responses conducive to tissue repair. In particular, a lack of rhBMP or insufficient degradability of the protein-PEG matrix prevented healing of bone defects or remodeling and replacement of the artificial matrix. This work confirms the feasibility of attaining desired biological responses in vivo by engineering material properties through the design of single components at the molecular level. The combination of polymer science and recombinant DNA technology emerges as a powerful tool for the development of novel biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm060504a | DOI Listing |
Wiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:
The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.
View Article and Find Full Text PDFSuccessful engraftment of skin grafts highly depends on the quality of the wound bed. Good quality of blood vessels near the surface is critical to support the viability of the graft. Ischemic, irradiated scar tissue, bone and tendons will not have the sufficient blood supply.
View Article and Find Full Text PDFInt Wound J
January 2025
Colzyx AB, Medicon Village, Lund, Sweden.
Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g.
View Article and Find Full Text PDFJ Control Release
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China. Electronic address:
Severe corneal injuries can cause visual impairment even blindness. Surgically stitching or implanting biomaterials have been developed, but their implementation requires professional surgeons, failing to address the immediate need of medical treatment. The pressing challenge lies in developing multifunctional biomaterials that enable self-management of corneal injuries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!