Therapeutic strategies based on cell and tissue engineering can be advanced by developing material substrates that effectively interrogate the biological compartment, with or without the complimentary local release of growth factors. Poly(ether ester) segmented copolymers were engineered as model material systems to elucidate the interfacial molecular events that govern the function of adhered cells. Surface chemistry was modulated by varying poly(ethylene glycol) (PEG) length and mole fraction with poly(butylene terephthalate) (PBT), leading to differential competitive protein adsorption of fibronectin and vitronectin from serum and consequently to different cell attachment modes. Adhesion within the hydrogel-like milieu of longer surface PEG was mediated via binding to the CD44 transmembrane receptor, rather than the RGD-integrin mechanism, whereas greater substrate-bound fibronectin resulted in cell adhesion via integrins. These adhesion modalities differentially impacted morphological cell phenotype (spread or spheroid) and the subsequent expression of mRNA transcripts (collagen types II, I) characteristic of phenotypically differentiated or dedifferentiated chondrocytes, respectively. These results demonstrate that materials can be designed to directly elicit the membrane bound receptor apparatus desired for downstream cellular response, without requiring exogenous biological growth factors to enable differentiated potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm060489+ | DOI Listing |
J Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
Selenium, an essential trace mineral for health, has seen a rise in clinical trials over the past nearly 5 decades. Our aim here is to provide a comprehensive and concise overview of selenium clinical trials from 1976 to 2023. Overall, the evolution of selenium clinical trials over 48 years has advanced through phases of emergence, prosperity, and either stability or transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!