PA4608 is a 125 residue protein from Pseudomonas aeruginosa with a recent identification as a PilZ domain and putative bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) adaptor protein that plays a role in bacterial second-messenger regulated processes. The nuclear magnetic resonance (NMR) structure of PA4608 has been determined and c-di-GMP binding has been confirmed by NMR titration studies. The monomeric core structure of PA4608 contains a six-stranded anti-parallel beta barrel flanked by three helices. Conserved surface residues among PA4608 homologs suggest the c-di-GMP binding site is at one end of the barrel and includes residues in the helices as well as in the unstructured N-terminus. Chemical shift changes in PA4608 resonances upon titration with c-di-GMP confirm binding. This evidence supports the hypothesis that proteins containing PilZ domains are the long-sought c-di-GMP adaptor proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.21199DOI Listing

Publication Analysis

Top Keywords

c-di-gmp binding
12
nmr structure
8
pseudomonas aeruginosa
8
pilz domain
8
c-di-gmp adaptor
8
structure pa4608
8
pa4608
6
c-di-gmp
6
binding
5
structure binding
4

Similar Publications

Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP.

View Article and Find Full Text PDF

and , key members of the ESKAPE group of hospital-acquired pathogens, are driving forces behind numerous infections due to their potent biofilm formation and the growing threat of antimicrobial resistance. Ferulic acid (FA) is known for its strong antioxidant properties and is recognized for its numerous physiological benefits, including anti-inflammatory, antimicrobial, anticancer, and antidiabetic effects. The current investigation delves into the antimicrobial and antibiofilm ability of FA against and .

View Article and Find Full Text PDF

Urinary tract infections (UTIs), primarily caused by uropathogenic (UPEC), have high morbidity and recurrence rates. Resistance to levofloxacin hydrochloride (LEV), a commonly used treatment for UTIs, is increasingly problematic, exacerbated by biofilm formation mediated by interactions between cyclic di-GMP (c-di-GMP or CDG) and YcgR. In this study, we identified three caffeoylquinic acid compounds from -chlorogenic acid (CGA), sibiricose A5 (Si-A5), and 3--caffeoylquinic acid methyl ester (CAM)-that target YcgR through molecular docking.

View Article and Find Full Text PDF

Background: Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown.

Aim: The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and (Pg) LPS affect the global proteome of HGFs.

View Article and Find Full Text PDF

c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!