Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50(th) percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis. The model was further integrated into a Wayne State University upper torso model and validated against data obtained from whole body sled tests. The model was validated against these experimental data over a range of impact speeds, impactor masses and boundary conditions. Using Design Of Experiment (DOE) methods based on Taguchi's approach and the developed FE model of the whole body, including the KTH complex, eight vehicular interior design parameters, namely the load limiter force, seat belt elongation, pretensioner inlet amount, knee-knee bolster distance, knee bolster angle, knee bolster stiffness, toe board angle and impact speed, each with either two or three design levels, were simulated to predict their respective effects on the potential of KTH injury in frontal impacts. Simulation results proposed best design levels for vehicular interior design parameters to reduce the injury potential of the KTH complex due to frontal automotive crashes. This study is limited by the fact that prediction of bony fracture was based on an element elimination method available in the LS-DYNA code. No validation study was conducted to determine if this method is suitable when simulating fractures of biological tissues. More work is still needed to further validate the FE model of the KTH complex to increase its reliability in the assessment of various impact loading conditions associated with vehicular crash scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4271/2005-22-0005 | DOI Listing |
Phys Rev E
November 2024
Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE10044 Stockholm, Sweden and Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE10044 Stockholm, Sweden.
Motivated by the limitations of conventional coarse-grained molecular dynamics for simulation of large systems of nanoparticles and the challenges in efficiently representing general pair potentials for rigid bodies, we present a method for approximating general rigid body pair potentials based on a specialized type of deep neural network that maintains essential properties, such as conservation of energy and invariance to the chosen origins of the particles. The network uses a specialized geometric abstraction layer to convert the relative coordinates of the rigid bodies to input more suitable to a conventional artificial neural network, which is trained together with the specialized layer. This results in geometric representations of the particles optimized for the specific potential.
View Article and Find Full Text PDFSensors (Basel)
December 2024
ITA Technological Institute of Aeronautics, Electronic and Computer Engineering, São José dos Campos 12228-900, SP, Brazil.
There is extensive use of nondestructive test (NDT) inspections on aircraft, and many techniques nowadays exist to inspect failures and cracks in their structures. Moreover, NDT inspections are part of a more general structural health monitoring (SHM) system, where cutting-edge technologies are needed as powerful resources to achieve high performance. The high-performance aspects of SHM systems are response time, power consumption, and usability, which are difficult to achieve because of the system's complexity.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
Although being able to determine whether a host molecule can enclose a guest molecule and form a caging complex could benefit numerous chemical and medical applications, the experimental discovery of molecular caging complexes has not yet been achieved at scale. Here, we propose MoleQCage, a simple tool for the high-throughput screening of host and guest candidates based on an efficient robotics-inspired geometric algorithm for molecular caging prediction, providing theoretical guarantees and robustness assessment. MoleQCage is distributed as Linux-based software with a graphical user interface and is available online at https://hub.
View Article and Find Full Text PDFCancer Discov
December 2024
Oregon Health & Science University, Portland, OR, United States.
Tumors escape immune detection and elimination through a variety of mechanisms. Here, we used prostate cancer as a model to examine how androgen-dependent tumors undergo immune evasion through downregulation of the major histocompatibility complex class I (MHCI). We report that response to immunotherapy in late-stage prostate cancer is associated with elevated MHC expression.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
The challenges presented by sour environments rich in hydrogen sulfide (HS) underscore the necessity for a comprehensive understanding of material behavior under such conditions. The cracking susceptibility of metals and alloys used for subsurface equipment in downhole oil and gas exploration operations is particularly concerning. The NACE Double Cantilever Beam (DCB) test has emerged as a widely used quality assurance tool in the petroleum industry, leveraging fracture mechanics principles to assess the environment-assisted cracking (EAC) resistance of metals and alloys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!