AI Article Synopsis

  • Ca2+ is essential for neurotransmitter release from peripheral sensory nerve terminals, but its regulation in these nerves is not well-studied.
  • In this study, the effects of several drugs on Ca2+ signals in rat corneal nerve terminals were analyzed using fluorescent imaging techniques.
  • The findings showed that the plasma membrane Ca2+-ATPase is crucial for Ca2+ clearance, and energy for this process largely comes from glycolysis rather than mitochondrial respiration.

Article Abstract

Ca2+ is vital for release of neurotransmitters and trophic factors from peripheral sensory nerve terminals (PSNTs), yet Ca2+ regulation in PSNTs remains unexplored. To elucidate the Ca2+ regulatory mechanisms in PSNTs, we determined the effects of a panel of pharmacological agents on electrically evoked Ca2+ transients in rat corneal nerve terminals (CNTs) in vitro that had been loaded with the fluorescent Ca2+ indicator, Oregon Green 488 BAPTA-1 dextran or fura-2 dextran in vivo. Inhibition of the sarco(endo)plasmic reticulum Ca2+-ATPase, disruption of mitochondrial Ca2+ uptake, or inhibition of the Na+-Ca2+ exchanger did not measurably alter the amplitude or decay kinetics of the electrically evoked Ca2+ transients in CNTs. By contrast, inhibition of the plasma membrane Ca2+-ATPase (PMCA) by increasing the pH slowed the decay of the Ca2+ transient by 2-fold. Surprisingly, the energy for ion transport across the plasma membrane of CNTs is predominantly from glycolysis rather than mitochondrial respiration, as evidenced by the observation that Ca2+ transients were suppressed by iodoacetate but unaffected by mitochondrial inhibitors. These observations indicate that, following electrical activity, the PMCA is the predominant mechanism of Ca2+ clearance from the cytosol of CNTs and glycolysis is the predominant source of energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075145PMC
http://dx.doi.org/10.1113/jphysiol.2006.119008DOI Listing

Publication Analysis

Top Keywords

nerve terminals
12
ca2+ transients
12
ca2+
10
peripheral sensory
8
sensory nerve
8
electrically evoked
8
evoked ca2+
8
plasma membrane
8
cnts glycolysis
8
calcium regulation
4

Similar Publications

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Introduction In their routine practice, dentists frequently encounter dentinal hypersensitivity, which is caused by the pulpal nerves' increased excitability due to fluid movement in the dentinal tubules. It is treated in-office using dentin desensitizers, which reduce hypersensitivity by obstructing the open tubules or desensitizing the free nerve endings present within the tubules. However, no substance or treatment plan has ever been proven to be the gold standard for the efficient treatment of dentinal hypersensitivity.

View Article and Find Full Text PDF

Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes.

View Article and Find Full Text PDF

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!