Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Smc6, a member of the structural maintenance of chromosomes (SMC) family of proteins, forms a complex with related Smc5. Genetic analyses of yeast have demonstrated the involvement of Smc6 in DNA repair and checkpoint responses. In this study, we investigated the role of the Smc5/6 complex in higher eukaryotes by analyzing its behavior in Xenopus laevis egg extracts. Smc5/6 was loaded onto chromatin during DNA replication in a manner dependent on the initiation of DNA synthesis, and it dissociated from chromatin during mitosis. Moreover, the induction of DNA double-strand breaks following replication did not significantly affect the amount of chromatin-associated Smc6. These findings suggest that the Smc5/6 complex is regulated during the cell cycle, presumably in anticipation of DNA damage that may arise during replication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.10.133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!