Apatite formation in composites of alpha-TCP and degradable polyesters.

J Biomater Sci Polym Ed

Department of Dental Materials Science, Ghent University, De Pintelaan 185 (P8), B-9000 Ghent, Belgium.

Published: December 2006

The objective of this study was to investigate the conversion of alpha-Ca3(PO4)2 (alpha-TCP) in composite bone cements based on a water-degradable polyester matrix as a function of the polymer formulation and the alpha-TCP filler content. Cross-linkable dimethacrylates of epsilon-caprolactone/ D,L-lactide co-polymer or of epsilon-caprolactone/glycolide co-polymer were mixed with hydroxyethylmethacrylate, a photo-initiator and alpha-TCP to obtain composites with a filler content of 80 or 40 wt% alpha-TCP. The disk shaped composite samples were set by visible light irradiation and immersed in HEPES at 37 degrees C. At selected times the samples were removed from the solution and analysed with X-ray diffractometry and infrared spectroscopy. Conversion of alpha-TCP into calcium-deficient hydroxyapatite (CDHAp) was observed for all composites, but the reaction was not completed after 8 weeks immersion. The conversion rate of alpha-TCP and the crystallinity of the formed apatite apparently were not affected by the type of polyester used, but significantly depended on the alpha-TCP content of the composites. An increase of the amount of alpha-TCP in the composite resulted in a slower formation of CDHAp with a higher crystallinity.

Download full-text PDF

Source
http://dx.doi.org/10.1163/156856206778366040DOI Listing

Publication Analysis

Top Keywords

alpha-tcp
9
alpha-tcp composite
8
filler content
8
apatite formation
4
composites
4
formation composites
4
composites alpha-tcp
4
alpha-tcp degradable
4
degradable polyesters
4
polyesters objective
4

Similar Publications

Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.

Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.

View Article and Find Full Text PDF

Tricalcium silicate (TCS)-based bioactive cements have attracted great attention for various endodontic applications owing to their hydraulic property, sealing ability and biological properties. Nevertheless, poor handling property and anti-washout ability are the main challenges for traditional TCS-based cements and their osteoinductive capacity needs enhance for accelerated pulpal and periapical tissue repair/regeneration. Herein, we developed an injectable TCS/α-tricalcium phosphate (α-TCP)/hydroxypropyl methylcellulose (HPMC) biocomposite with improved physicochemical properties and osteoinductive ability via the incorporation of α-TCP/HPMC.

View Article and Find Full Text PDF

Bone cements are the subject of intensive research, primarily due to their versatility and the increasing importance for personalized medicine. In this study, novel hybrid self-setting scaffolds, based on calcium phosphates and natural polymers, were fabricated using the robocasting technique. Additionally, the influence of two different silane coupling agents, tetraethyl orthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS), on the physicochemical and biological properties of the obtained materials was thoroughly investigated.

View Article and Find Full Text PDF

The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation of bioactive ceramic coatings. Calcium-phosphate materials based on hydroxyapatite have been proposed as bioactive ceramic coatings on titanium implants for the effective acceleration of bone tissue healing.

View Article and Find Full Text PDF

Calcium phosphate cement (CPC) has evolved as an appealing bone substitute material, especially since CPCs were combined with poly(lactic-co-glycolic acid) (PLGA) porogens to render the resulting CPC/PLGA composite degradable. In view of the multiple variables of CPC and PLGA used previously, the effect of CPC composition and PLGA porogen morphology (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!