Several different procedures are available for the immobilization of proteins on solid supports, as many advantages derive from this approach, such as the possibility to develop new protein solid-state assays. Enzymes that are anchored on gold surfaces can interact with several different molecules in a tag-free environment, opening the way to surface plasmon resonance (SPR) investigations. Nevertheless, it is often important to know the identity of the affinity-retained analyte, and mass spectrometric analysis, via its unique molecular mass identification, represents a very valuable complementary method. There are many pieces of evidence to suggest that matrix metalloproteinases (MMPs) are involved in normal and pathological processes, including embryogenesis, wound healing, inflammation, arthritis and cancer, but presumably also exhibiting other functions. The search for new inhibitors of MMPs has prompted research towards the development of new solid-state assays for the rapid evaluation of MMP activity. We have already reported the possibility of measuring the activity of MMP-1 anchored on solid support by coupling SPR with ESI-MS analysis. In this work, we show the in situ atmospheric pressure (AP) MALDI-MS characterization of MMPs anchored on a gold chip with known surface coverage. The study extends the MS analysis to different proteins, and sequence coverage is reported for different digestion and MS procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.1126DOI Listing

Publication Analysis

Top Keywords

matrix metalloproteinases
8
solid-state assays
8
anchored gold
8
situ ap/maldi-ms
4
ap/maldi-ms characterization
4
anchored
4
characterization anchored
4
anchored matrix
4
metalloproteinases procedures
4
procedures immobilization
4

Similar Publications

Background: Abdominal aortic aneurysm (AAA) is characterized by the proteolytic breakdown of the extracellular matrix, leading to dilatation of the aorta and increased risk of rupture. Biomarkers that can predict major adverse aortic events (MAAEs) are needed to risk stratify patients for more rigorous medical treatment and potential earlier surgical intervention.

Objectives: The primary objective was to identify the association between baseline levels of these biomarkers and MAAEs over a period of 5 years.

View Article and Find Full Text PDF

Endometriosis is a gynecological disorder characterized by chronic inflammation, anatomical changes, prolonged pain, and infertility. On the other hand, is recognized for its pharmacological effects, which might be beneficial in managing endometriosis. The aim of the study was to investigate the pharmacological effects of as a potential therapy for endometriosis by using an animal model.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a common contributor for low back pain, which is featured by loss of extracellular matrix and nucleus pulposus cells (NPCs). Hence, our current study is undertaken to explore the potential mechanism of NPC apoptosis during IVDD. Transcription factor Dp-1 (TFDP1) expression in degenerative and non-degenerative intervertebral disc tissues was analyzed by bioinformatics.

View Article and Find Full Text PDF

A Study on Endometrial Polyps Recurrence Post-Hysteroscopic Resection: Identification of Influencing Factors and Development of a Predictive Model.

Ann Ital Chir

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, 322000 Yiwu, Zhejiang, China.

Aim: This study aimed to explore influencing factors and develop a predictive model of endometrial polyps (EP) recurrence after hysteroscopic resection.

Methods: This retrospective study included 180 patients who underwent hysteroscopic resection for EP between January 2021 to December 2023. The patients were divided into a modeling group (n = 135) and a validation group (n = 45) in a 3:1 ratio.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!