A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Complementarity of hydrophobic properties in ATP-protein binding: a new criterion to rank docking solutions. | LitMetric

ATP is an important substrate of numerous biochemical reactions in living cells. Molecular recognition of this ligand by proteins is very important for understanding enzymatic mechanisms. Considerable insight into the problem may be gained via molecular docking simulations. At the same time, standard docking protocols are often insufficient to predict correct conformations for protein-ATP complexes. Thus, in most cases the native-like solutions can be found among the docking poses, but current scoring functions have only limited ability to discriminate them from false positives. To improve the selection of correct docking solutions obtained with the GOLD software, we developed a new ranking criterion specific for ATP-protein binding. The method is based on detailed analysis of the intermolecular interactions in 40 high-resolution 3D structures of ATP-protein complexes (the training set). We found that the most important factors governing this recognition are hydrogen-bonding, stacking between adenine and aromatic protein residues, and hydrophobic contacts between adenine and protein residues. To address the latter, we applied the formalism of 3D molecular hydrophobicity potential. The results obtained were used to construct an ATP-oriented scoring criterion as a linear combination of the terms describing these intermolecular interactions. The criterion was then validated using the test set of 10 additional ATP-protein complexes. As compared with the standard scoring functions, the new ranking criterion significantly improved the selection of correct docking solutions in both sets and allowed considerable enrichment at the top of the list containing docking poses with correct solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.21122DOI Listing

Publication Analysis

Top Keywords

docking solutions
12
atp-protein binding
8
docking poses
8
scoring functions
8
selection correct
8
correct docking
8
ranking criterion
8
intermolecular interactions
8
atp-protein complexes
8
protein residues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!