Transforming growth factor-betas (TGF-betas) are widely expressed and play roles as multifunctional growth factors and regulators of key events in development, disease, and repair. However, it is not known whether TGF-betas affect the plasticity of hippocampal neurons. As a first step to address this issue, we examined whether TGF-beta2 modulated the electrophysiological and biochemical properties of cultured hippocampal neurons. We found that prolonged 24 h treatment with TGF-beta2 induced facilitation of evoked postsynaptic currents (ePSCs). This facilitation was associated with a decrease in short-term synaptic depression of ePSCs and increases in both the amplitude and frequency of spontaneous miniature postsynaptic currents (mPSCs). The long-term changes of ePSCs and mPSCs may be associated with cAMP response element-binding protein (CREB), which has been previously implicated in long-term potentiation. Immunofluorescence techniques and Western blot analysis both revealed that TGF-beta2 enhanced the phosphorylation of CREB. Together, these results suggest that TGF-beta2 may play a role in the cascade of events underlying long-term synaptic facilitation in hippocampus, and that CREB may be an important mediator of these effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.20243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!