Purpose Of Review: To address lung recruitment according to pressure/volume curves, along with regional recruitment versus hyperinflation evidence from computed tomography and electrical impedance tomography.
Recent Findings: Cyclical tidal volume recruitment of atelectatic lung regions causes acute lung injury, as do large breaths during pneumonectomy. Using the lower inflection point on the static pressure/volume inflation curve plus 2 cmH2O as a positive end-expiratory pressure setting limits hyperinflation in acute lung injury, but may not provide enough positive end-expiratory pressure to avoid cyclical recruitment/derecruitment injury in more severe acute lung injury regions. Both computed tomography and electrical impedance tomography can help titrate positive end-expiratory pressure in these regions, thereby assuring an 'open lung' ventilatory pattern. Regional pressure/volume curves show that adequate positive end-expiratory pressure for severe acute lung injury regions may not be reliably determined from whole lung pressure/volume curves. Balancing positive end-expiratory pressure requires both arterial PO2 and PCO2 values to determine at what level hyperinflated regions become seriously underperfused (develop very high ventilation-perfusion ratios), adding to the hypercarbia from increased deadspace.
Summary: Positive end-expiratory pressure levels must be high enough to minimize recruitment/derecruitment cycling. Balancing recruitment versus overdistension may require thoracic tomography, to assure sufficient improvement in oxygenation while limiting hypercarbia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ACO.0b013e328011015d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!