A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RNAi-based gene silencing in primary mouse and human adipose tissues. | LitMetric

Cultured adipocyte cell lines are a model system widely used to study adipose function, but they exhibit significant physiological differences compared with primary cells from adipose tissue. Here we report short interfering RNA-based methodology to selectively attenuate gene expression in mouse and human primary adipose tissues as a means of rapidly validating findings made in cultured adipocyte cell lines. The method is exemplified by depletion of the PTEN phosphatase in white adipose tissue (WAT) from mouse and humans, which increases Akt phosphorylation as expected. This technology is also shown to silence genes in mouse brown adipose tissue. Previous work revealed upregulation of the mitochondrial protein UCP1 in adipose cells from mice lacking the gene for the transcriptional corepressor RIP140, whereas in cultured adipocytes, loss of RIP140 has a little effect on UCP1 expression. Application of our method to deplete RIP140 in primary mouse WAT elicited markedly increased oxygen consumption and expression of UCP1 that exactly mimics the phenotype observed in RIP140-null mice. This ex-vivo method of gene silencing should be useful in rapid validation studies as well as in addressing the depot- and species-specific functions of genes in adipose biology.

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.D600033-JLR200DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
gene silencing
8
primary mouse
8
mouse human
8
adipose
8
adipose tissues
8
cultured adipocyte
8
adipocyte cell
8
cell lines
8
mouse
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!