CYP2E1-catalyzed oxidation contributes to the sperm toxicity of 1-bromopropane in mice.

Biol Reprod

RTI International, Research Triangle Park, North Carolina 27709, USA.

Published: March 2007

1-bromopropane (1-BrP) induces dose- and time-dependent reproductive organ toxicity and reduced sperm motility in rodents. The contribution of cytochrome P4502E1 (CYP2E1) to both 1-BrP metabolism and the induction of male reproductive toxicity was investigated using wild-type (WT) and Cyp2e1-/- mice. In gas uptake inhalation studies, the elimination half-life of [1,2,3-(13)C]-1-BrP was longer in Cyp2e1-/- mice relative to WT (3.2 vs. 1.3 h). Urinary metabolites were identified by 13C nuclear magnetic resonance. The mercapturic acid of 1-bromo-2-hydroxypropane (2OHBrP) was the major urinary metabolite in WT mice, and products of conjugation of 1-BrP with glutathione (GSH) were insignificant. The ratio of GSH conjugation to 2-hydroxylation increased 5-fold in Cyp2e1-/- mice relative to WT. After 1-BrP exposure, hepatic GSH was decreased by 76% in WT mice vs. 47% in Cyp2e1-/- mice. Despite a 170% increase in 1-BrP exposure in Cyp2e1-/- vs. WT mice, sperm motility in exposed Cyp2e1-/- mice did not change relative to unexposed matched controls. This suggests that metabolites produced through CYP2E1-mediated oxidation may be responsible for 1-BrP-induced sperm toxicity. Both 1-BrP and 2OHBrP inhibited the motility of sperm obtained from WT mice in vitro. However, only 2OHBrP reduced the motility of sperm obtained from Cyp2e1-/- mice in vitro, suggesting that conversion of parent compound to 2OHBrP within the spermatozoa may contribute, at least in part, to reduced motility. Overall, these data suggest that metabolism of 1-BrP is mediated in part by CYP2E1, and activation of 1BrP via this enzyme may contribute to the male reproductive toxicity of this chemical.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.106.055004DOI Listing

Publication Analysis

Top Keywords

cyp2e1-/- mice
28
mice
11
sperm toxicity
8
sperm motility
8
male reproductive
8
reproductive toxicity
8
mice relative
8
1-brp exposure
8
motility sperm
8
mice vitro
8

Similar Publications

Whether early life acetaminophen (APAP) exposures injure the developing lung is controversial. We sought to correlate murine pulmonary developmental expression profiles of to susceptibility to APAP exposure. P14 C57BL/6 mice were exposed to APAP (140 mg/kg x 1, IP) and assessed for evidence of a histologic, metabolic, functional, and/or transcriptional pulmonary response.

View Article and Find Full Text PDF

Antifibrotic potential of reserpine (alkaloid) targeting Keap1/Nrf2; oxidative stress pathway in CCl-induced liver fibrosis.

Chem Biol Interact

January 2025

Centre of Excellence in Molecular Biology, University of the Punjab, Thokar Niaz Baig, Lahore, 53700, Pakistan; Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan. Electronic address:

The death rate due to liver cancer approaches 2 million annually, the majority is attributed to fibrosis. Currently, there is no efficient, safe, non-toxic, and anti-fibrotic drug available, suggesting room for better drug discovery. The current study aims to evaluate the anti-fibrotic role of reserpine, an alkaloid plant compound against CCl-induced liver fibrosis.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS, Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Paracetamol (APAP) overdose is the leading cause of drug-induced liver injury, leading to acute liver failure. However, the role of concurrent acute or chronic ethanol ingestion in this context requires further clarification. In this study, we investigated the effects of acute and chronic ethanol ingestion on APAP-induced hepatotoxicity.

View Article and Find Full Text PDF

Despite significant advancements in cancer immunotherapy, many patients continue to respond poorly. Novel therapeutic strategies and drugs are urgently needed. Here, we found that CYP2E1 is upregulated in M2 macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!