Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein.

J Virol

Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.

Published: February 2007

The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a beta-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental beta-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797520PMC
http://dx.doi.org/10.1128/JVI.01551-06DOI Listing

Publication Analysis

Top Keywords

rous sarcoma
8
sarcoma virus
8
consensus binding
8
binding site
8
genome replication
8
genetic studies
4
studies beta-hairpin
4
beta-hairpin loop
4
loop rous
4
virus capsid
4

Similar Publications

The Rous sarcoma virus (RSV) is an onco-retrovirus that infects avian species such as the chicken (Gallus gallus). RSV is the first oncovirus to be described, and the oncogenic activity of this virus is related to the expression of a tyrosine kinase that induces carcinogenic transformation. Interestingly, we have noted that the RSV genome contains various potential G4-forming sequences.

View Article and Find Full Text PDF

Retroviruses are responsible for significant pathology in humans and animals, including the acquired immunodeficiency syndrome and a wide range of malignancies. A crucial yet poorly understood step in the replication cycle is the recognition and selection of unspliced viral RNA (USvRNA) by the retroviral Gag protein, which binds to the psi (Ψ) packaging sequence in the 5' leader, to package it as genomic RNA (gRNA) into nascent virions. It was previously thought that Gag initially bound gRNA in the cytoplasm.

View Article and Find Full Text PDF

Zoonotic viruses are an omnipresent threat to global health. Influenza A virus (IAV) transmits between birds, livestock, and humans. Proviral host factors involved in the cross-species interface are well known.

View Article and Find Full Text PDF

Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.

View Article and Find Full Text PDF

A Novel Rat Model to Simulate Positive Margins in the Wound Bed of a Resected Sarcoma.

Plast Reconstr Surg Glob Open

November 2024

From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Stony Brook University Hospital and Medical Center, Stony Brook, NY.

Background: One reason for local recurrence is the presence of positive surgical margins after tumor resection. An animal model accurately representing the microtumor burden will improve our understanding of these surgical margins. Using a rat model, we report a new methodology for creating microscopic tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!