In this study we have investigated the interaction of hyaluronan (HA) and CD44 with the neuronal Wiskott-Aldrich syndrome protein (N-WASP) in regulating actin polymerization and ErbB2/beta-catenin signaling in human ovarian tumor cells (SK-OV-3.ipl cells). Biochemical and immunological analyses indicate that N-WASP is expressed in SK-OV-3.ipl cells and that the binding of HA stimulates N-WASP association with CD44 and Arp2/Arp3 leading to filamentous actin formation and ovarian tumor cell migration. In addition, HA binding promotes CD44-N-WASP association with ErbB2 and activates ErbB2 kinase activity that in turn increases phosphorylation of the cytoskeletal protein, beta-catenin. Subsequently, phosphorylated beta-catenin is transported into the nucleus leading to beta-catenin-mediated TCF/LEF-transcriptional co-activation. Because HA-induced beta-catenin phosphorylation, nuclear translocation, and TCF/LEF transcriptional activation is effectively blocked by the ErbB2 inhibitor, AG825, we conclude that HA/CD44-N-WASP-associated ErbB2 activation is required for beta-catenin-mediated signaling events. Transfection of SK-OV-3.ipl cells with N-WASP-VCA (verpolin homology, cofilin homology, and acidic domain) fragment cDNA not only blocks HA/CD44-induced N-WASP-Arp2/3 complex formation but also inhibits actin polymerization/F-actin assembly and tumor cell migration. Overexpression of the N-WASP-VCA domain also significantly reduces HA-induced ErbB2 recruitment to CD44, diminishes beta-catenin phosphorylation/nuclear translocation, and abrogates TCF/LEF-specific transcriptional co-activation by beta-catenin. Taken together, our findings strongly suggest that N-WASP plays a pivotal role in regulating HA-mediated CD44-ErbB2 interaction, beta-catenin signaling, and actin cytoskeleton functions that are required for tumor-specific behaviors and ovarian cancer progression.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604672200DOI Listing

Publication Analysis

Top Keywords

cell migration
12
ovarian tumor
12
sk-ov-3ipl cells
12
wiskott-aldrich syndrome
8
syndrome protein
8
protein n-wasp
8
actin polymerization
8
erbb2 activation
8
nuclear translocation
8
tumor cells
8

Similar Publications

Intracellular morphological apical-basal polarity, regulated by conserved polarity proteins, plays a crucial role in cell migration and metastasis. In this study, using a genetically encoded Förster resonance energy transfer (FRET) biosensor to visually present the spatiotemporal stress state between the lipid rafts on the membrane and the linked actin, we first provide the evidence for the existence of intrinsic apical-basal stress polarity in tumor cells and demonstrate that this polarity is a prerequisite for the formation of flow-induced front-back stress polarity. Interestingly, our study revealed that the front-back stress polarity disappeared upon the disruption of intrinsic apical-basal stress discrepancy, resulting in a large attenuated cell migration activity reduced from 76.

View Article and Find Full Text PDF

Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes.

J Phys Chem B

January 2025

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.

PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).

View Article and Find Full Text PDF

Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.

View Article and Find Full Text PDF

Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.

View Article and Find Full Text PDF

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!