Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enhancement of the redox status of cells is a cytoprotective strategy against oxidative damage. We recently showed that DHA upregulates glutathione (GSH) content via an induction of its related enzymes gamma-glutamylcysteine ligase and glutathione reductase. In the present study, we investigated the effects of eight other fatty acids on the redox status and lipid peroxidation of human fibroblasts. After 48 h, only arachidonic acid and conjugated linoleic acid (CLA) enhanced GSH content through an induction of gamma-glutamylcysteine ligase. CLA was more potent than arachidonic acid in inducing GSH synthesis. For all the fatty acids tested, lipoperoxidation, estimated by cell malondialdehyde measurement, did not differ from that of controls at 48 h but dramatically increased at 7 d, except for CLA. Lipoperoxidation is associated at 7 d with a high level of reactive oxygen species and with increased haemoxygenase-1 and cyclooxygenase-2 mRNA expression. As demonstrated by a tert-butylhydroperoxide cytotoxicity test, the GSH synthesis obtained with arachidonic acid is not sufficient to protect the cells, whereas this protective effect was obvious with CLA at 48 h as well as at 7 d. The present results show that CLA is the only PUFA able to induce GSH synthesis without any change in oxidative balance, whereas an upregulation of cyclooxygenase-2 by other PUFA is concomitant with an overproduction of malondialdehyde and reactive oxygen species. The particular hairpin conformation obtained for CLA by molecular modelling could account for this specific biological effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/bjn20061910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!