EMB506 is a chloroplast protein essential for embryo development, the function of which is unknown. A two-hybrid interaction screen was performed to provide insight into the role of EMB506. A single interacting partner, AKRP, was identified among a cDNA library from immature siliques. The AKR gene (Zhang et al., 1992, Plant Cell 4, 1575-1588) encodes a protein containing five ankyrin repeats, very similar to EMB506. Protein truncation series demonstrated that both proteins interact through their ankyrin domains. Using reverse genetics, we showed that loss of akr function resulted in an embryo-defective (emb) phenotype indistinguishable from the emb506 phenotype. Transient expression of the signal peptide of AKRP fused to green fluorescent protein demonstrated the chloroplast localization of AKRP. The ABI3 promoter was used to express AKR in a seed-specific manner in order to analyse the post-embryonic effect of AKR loss of function in akr/akr seedlings. Homozygous fertile and viable akr/akr plants were obtained. These plants exhibited mild to severe defects in chloroplast and leaf cellular organization. We conclude that EMB506 and AKRP are involved in crucial and tightly controlled events in plastid differentiation linked to cell differentiation, morphogenesis and organogenesis during the plant life cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2006.02922.x | DOI Listing |
J Microsc
January 2025
Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques.
View Article and Find Full Text PDFAnn Bot
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
Background: The frequent communication between African and Southeast Asian (SEA) countries has led to the risk of imported malaria cases in the China-Myanmar border (CMB) region. Therefore, tracing the origins of new malaria infections is important in the maintenance of malaria-free zones in this border region. A new genotyping tool based on a robust mitochondrial (mt) /apicoplast (apico) barcode was developed to estimate genetic diversity and infer the evolutionary history of Plasmodium falciparum across the major distribution ranges.
View Article and Find Full Text PDFJ Plant Res
December 2024
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
Thiol/disulfide-based redox regulation is a key mechanism for modulating protein functions in response to changes in cellular redox status. Two thioredoxin (Trx)-like proteins [atypical Cys His-rich Trx (ACHT) and Trx-like2 (TrxL2)] have been identified as crucial for oxidizing and deactivating several chloroplast enzymes during light-to-dark transitions; however, their roles remain to be fully understood. In this study, we investigated the functions of Trx-like proteins in seed development.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!