The vibronic structure of the closely spaced and strongly coupled X 2Sigma+ and A 2Pi states in the photodetachment spectra of CCCl- and CCBr- has been calculated by considering Sigma-Pi vibronic coupling together with spin-orbit coupling. The stretching modes are treated within the so-called linear-vibronic-coupling model. The vibronic and spin-orbit parameters have been determined by accurate ab initio electronic-structure calculations. While the nonrelativistic vibronic-coupling parameters are of approximately equal strength in CCCl and CCBr, the vibronic-coupling parameters of spin-orbit origin are found to be larger in the latter. The calculated photodetachment spectra of both systems are shown to exhibit a complicated vibronic structure due to strong Sigma-Pi vibronic coupling. The spectral envelopes of the calculated photodetachment spectra exhibit a double-hump reminiscent of strongly coupled Exe Jahn-Teller systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2363193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!