Inversion symmetry is included in the operator formulation of the centroid molecular dynamics (CMD). This work involves the development of a symmetry-adapted CMD (SA-CMD), here particularly for symmetrization and antisymmetrization projections. A symmetry-adapted quasidensity operator, as defined by Blinov and Roy [J. Chem. Phys. 115, 7822 (2001)], is employed to obtain the centroid representation of quantum mechanical operators. Numerical examples are given for a single particle confined to one-dimensional symmetric quartic and symmetric double-well potentials. Two SA-CMD simulations are performed separately for both projections, and centroid position autocorrelation functions are obtained. For each projection, the quality of the approximation as well as the accuracy are similar to those of regular CMD. It is shown that individual trajectories from two separate SA-CMD simulations can be properly combined to recover trajectories for Boltzmann statistics. Position autocorrelation functions are compared to the exact quantum mechanical ones. This explicit account of inversion symmetry provides a qualitative improvement on the conventional CMD approach and allows the recovery of some quantum coherence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2358989 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!