An approach for the fabrication of metal nanowires is presented. Palladium wires with diameters less than 50 nm were produced by electrochemical decoration of step edge sites on the surface of highly ordered pyrolytic graphite via the following three steps. First an electrochemical activation step was used to oxidize the edge plane sites on highly ordered pyrolytic graphite surfaces in 0.5 M Na(2)SO(4). Second, a potential cycling step in a 1 mM PdCl(2) solution in 0.1 M H(2)SO(4) was used to form palladium oxide (s) and/or complexes of Pd on the step edges. Third, Pd nanowires were formed by electroreduction after transfer of the graphite to 0.1 M H(2)SO(4). The resulting wires showed a high degree of uniformity. A merit of this approach is that it allowed metal nanowires to be fabricated without the simultaneous formation of nanoparticles on the basal plane terraces, in contrast to other studies of this type. The mesoscopic palladium wires are shown to be useful for the electrochemical sensing of hydrazine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp065776mDOI Listing

Publication Analysis

Top Keywords

highly ordered
12
ordered pyrolytic
12
pyrolytic graphite
12
edge plane
8
plane sites
8
sites highly
8
electrochemical decoration
8
metal nanowires
8
palladium wires
8
graphite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!