A flexible transcutaneous oxygen sensor using polymer membranes.

Biomed Microdevices

Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.

Published: February 2007

A wearable and flexible oxygen sensor for transcutaneous blood gas monitoring was fabricated and tested. The sensor has a laminar film-like structure, which was fabricated by pouching KCl electrolyte solution by both non-permeable (metal weldable) sheet and gas-permeable membrane with Pt- and Ag/AgCl-electrodes patterned using microfabrication process. The electrolyte solution was fixed only by heat-sealing the edges of the weldable membranes without any chemical adhesives. The wearable oxygen sensor (thickness: 84 mum) was applied to the electrochemical measurement with a constant potential of -600 mV vs. Ag/AgCl, thus obtaining the calibration range to dissolved oxygen (DO) from 0.0 to 7.0 mg/l with a correlation coefficient of 0.998 and the quick response time (53.4 s to 90% of a steady-state current), which operate similarly to a commercially available oxygen electrode. The sensor was also utilized to transcutaneous oxygen monitoring for healthy human subject. The sensing region of the wearable oxygen sensor was attached onto the forearm-skin surface of the subject inhaling various concentrations of oxygen. As a result of physiological application, the output current was varied from -6.2 microA to -7.8 microA within 2 min when the concentration of inhaling oxygen was changed from atmospheric air to 60% oxygen. Thus, the transcutaneous oxygen was successfully monitored without any inconveniences such as skin inflammation, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-006-9000-zDOI Listing

Publication Analysis

Top Keywords

oxygen sensor
16
transcutaneous oxygen
12
oxygen
11
electrolyte solution
8
wearable oxygen
8
sensor
6
flexible transcutaneous
4
sensor polymer
4
polymer membranes
4
membranes wearable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!