Objective: To examine the relationship between bone mineral density and nutritional status, age, and anthropometrical data in elderly women.
Materials And Methods: A validated international nutrition-risk-screening questionnaire, the Mini Nutritional Assessment, was used for evaluation of nutrition. The Mini Nutritional Assessment is a clinical tool consisting of four items: anthropometric assessment, global evaluation, dietetic assessment, and subjective assessment. Height and body weight were measured while the participants wore indoor clothes and no shoes; mid-arm and calf circumferences were measured with tape measure. The measurements of skinfold thickness on triceps, waist, and thigh were taken with a caliper. Bone mineral density was measured at distal radius of the nondominant forearm by dual x-ray absorptiometry.
Results: Our results indicate that anthropometric parameters (height, weight, body mass index, skinfold thickness) in elderly women with osteoporosis were the smallest. It was determined that more fats and proteins are reserved in the body, the greater the bone mineral density is. The nutritional status and age had a significant influence on bone mineral density. It was determined that women with osteoporosis had a tendency for greater malnutrition risk according to Mini Nutritional Assessment. Women with osteoporosis had worse appetites and suffered from cardiovascular diseases more often.
Conclusions: It was determined that the nutritional status of elderly women, assessed by the Mini Nutritional Assessment questionnaire, reflects bone mineral density. It was found that women's age and anthropometric data, reflecting fat reserves in the body (body mass index, skinfold thickness), are significantly related to low bone mineral density.
Download full-text PDF |
Source |
---|
Clin Oral Investig
January 2025
Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
Objectives: This paper aims to review the immunopathogenesis of Diabetes-associated periodontitis (DPD) and to propose a description of the research progress of drugs with potential clinical value from an immunotherapeutic perspective.
Materials And Methods: A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Web of Science, Scopus and the Cochrane Library. Inclusion criteria were studies on the association between diabetes and periodontitis using the Boolean operator "AND" for association between diabetes and periodontitis, with no time or language restrictions.
Calcif Tissue Int
January 2025
National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA.
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.
Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!