The WS4 mouse is an animal model for human Waardenburg syndrome type 4 (WS4), showing pigmentation anomalies, deafness and megacolon, which are caused by defects of neural crest-derived cells. We have previously reported that the gene responsible for the WS4 mouse is an allele of the piebald mutations of the endothelin B receptor gene (Ednrb). In this study, we examined the genomic sequence of the Ednrb gene in WS4 mice and found a 598-bp deletion in the gene. The deleted region contains the entire region of exon 2 and the 5' part of exon 3 and is flanked by inverted repeat sequences which are suggested to trigger the deletion. We concluded that the deletion in the Ednrb gene is the causative mutation for the phenotype of WS4 mice.

Download full-text PDF

Source
http://dx.doi.org/10.1538/expanim.55.491DOI Listing

Publication Analysis

Top Keywords

ws4 mice
12
receptor gene
8
gene responsible
8
ws4 mouse
8
ednrb gene
8
gene
6
ws4
6
deletion
4
deletion endothelin-b
4
endothelin-b receptor
4

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia.

View Article and Find Full Text PDF

Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings.

View Article and Find Full Text PDF

The WS4 mouse is an animal model for human Waardenburg syndrome type 4 (WS4), showing pigmentation anomalies, deafness and megacolon, which are caused by defects of neural crest-derived cells. We have previously reported that the gene responsible for the WS4 mouse is an allele of the piebald mutations of the endothelin B receptor gene (Ednrb). In this study, we examined the genomic sequence of the Ednrb gene in WS4 mice and found a 598-bp deletion in the gene.

View Article and Find Full Text PDF

The transcription factor SOX10 is mutated in the human neurocristopathy Waardenburg-Shah syndrome (WS4), which is characterized by enteric aganglionosis and pigmentation defects. SOX10 directly regulates genes expressed in neural crest lineages, including the enteric ganglia and melanocytes. Although some SOX10 target genes have been reported, the mechanisms by which SOX10 expression is regulated remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!