LPL mediates the uptake of lipoproteins into different cell types independent of its catalytic activity. The mechanism of this process and its physiological relevance are not clear. Taking into account the importance of the endothelial barrier for lipoprotein uptake, in vitro studies with primary aortic endothelial cells from wild-type and low density lipoprotein receptor (LDLR)-deficient (LDLR(-/-)) mice were performed. Addition of LPL almost doubled the uptake of LDL into wild-type cells. However, there was virtually no LPL-mediated change of LDL uptake into LDLR(-/-) cells. Upregulation of LDLR by lipoprotein-deficient serum/lovastatin in wild-type cells resulted in a 7-fold increase of LPL-mediated LDL uptake. Uptake of chylomicron remnants was not affected by LDLR expression. In proteoglycan-deficient cells, LPL did not increase the uptake of lipoproteins. The physiological relevance of this pathway was studied in mice that were both LDLR(-/-) and transgenic for catalytically inactive LPL in muscle. In the presence of LDLR, inactive LPL reduced LDL cholesterol significantly (13-24%). In the absence of LDLR, LDL cholesterol was not affected by transgenic LPL. Metabolic studies showed that in the presence of LDLR, LPL increased the muscular uptake of LDL by 77%. In the absence of LDLR, transgenic LPL did not augment LDL uptake. Chylomicron uptake was not affected by the LDLR genotype. We conclude that LPL-mediated cellular uptake of LDL, but not of chylomicrons, is dependent on the presence of both LDLR and proteoglycans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.M600292-JLR200 | DOI Listing |
Alzheimers Dement
December 2024
University of California, Los Angeles, Los Angeles, CA, USA.
Background: Alzheimer's Disease and other neurodegenerative diseases are characterized by abnormal tau protein accumulation in the brain. PET imaging utilizing the [F-18]flortaucipir tracer is a widely used method for visualizing such conditions, yet its effectiveness can be compromised by off-target binding. To shed light on this issue, our study focuses on how elevated cholesterol concentrations of low-density lipoproteins (LDL) and standard uptake values (SUVR) from corresponding tau-PET scans may influence the efficacy of [F-18]flortaucipir.
View Article and Find Full Text PDFBackground: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.
Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.
Biomedicines
November 2024
Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
Cardiovascular disease (CVD) and ischemic stroke (IS) are the primary causes of mortality worldwide. Hypercholesterolemia has been recognized as an independent risk factor for CVD and IS. Numerous clinical trials have unequivocally demonstrated that reducing levels of low-density lipoprotein cholesterol (LDL-C) significantly mitigates the risk of both cardiac and cerebral vascular events, thereby enhancing patient prognosis.
View Article and Find Full Text PDFHipertens Riesgo Vasc
January 2025
Hospital Pharmacist Manager, Pharmaceutical Department, Asl Napoli 3 Sud., Italy. Electronic address:
Statins are crucial for both the prevention and management of atherosclerotic cardiovascular disease (ASCVD). However, even with optimized statin therapy, a significant residual risk of ASCVD remains, highlighting the need for innovative approaches to lipid-lowering therapies (LLT) that more effectively target low-density lipoprotein cholesterol (LDL-C) and other atherogenic lipoproteins. Recently, novel pharmacologic agents have been introduced for the management of dyslipidemia.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand.
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!