PUF protein-mediated deadenylation is catalyzed by Ccr4p.

J Biol Chem

Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Published: January 2007

AI Article Synopsis

  • PUF proteins regulate gene expression by binding to specific mRNAs and inducing decay or repression.
  • The yeast PUF protein, Mpt5p, controls HO mRNA by enabling the removal of its poly(A) tail through a process called deadenylation, which requires the POP2 component of the Ccr4p-Pop2p-Not complex.
  • This study reveals that while both Ccr4p and Pop2p are necessary for Mpt5p-regulated deadenylation, only Ccr4p's enzymatic activity is essential, suggesting that Pop2p acts as a bridge to recruit Ccr4p to target mRNAs for deadenylation.

Article Abstract

PUF proteins control gene expression by binding to the 3'-untranslated regions of specific mRNAs and triggering mRNA decay or translational repression. Here we focus on the mechanism of PUF-mediated regulation. The yeast PUF protein, Mpt5p, regulates HO mRNA and stimulates removal of its poly(A) tail (i.e. deadenylation). Mpt5p repression in vivo is dependent on POP2, a component of the cytoplasmic Ccr4p-Pop2p-Not complex that deadenylates mRNAs. In this study, we elucidate the individual roles of the Ccr4p and Pop2p deadenylases in Mpt5p-regulated deadenylation. Both in vivo and in vitro, Pop2p and Ccr4p proteins are required for Mpt5p-regulated deadenylation of HO. However, the requirements for the two proteins differ dramatically: the enzymatic activity of Ccr4p is essential, whereas that of Pop2p is dispensable. We conclude that Pop2p is a bridge through which the PUF protein recruits the Ccr4p enzyme to the target mRNA, thereby stimulating deadenylation. Our data suggest that PUF proteins may enhance mRNA degradation and repress expression by both deadenylation-dependent and -independent mechanisms, using the same Pop2p bridge to recruit a multifunctional Pop2p complex to the mRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M609413200DOI Listing

Publication Analysis

Top Keywords

puf proteins
8
puf protein
8
mpt5p-regulated deadenylation
8
pop2p bridge
8
pop2p
6
puf
5
deadenylation
5
ccr4p
5
mrna
5
puf protein-mediated
4

Similar Publications

A higher order PUF complex is central to regulation of C. elegans germline stem cells.

Nat Commun

January 2025

Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.

PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF binding elements (FBEs) in its 3'UTR.

View Article and Find Full Text PDF

Robust and Versatile Biodegradable Unclonable Anti-Counterfeiting Labels with Multi-Mode Optical Encoding Using Protein-Mediated Luminescent Calcite Signatures.

Adv Mater

December 2024

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.

Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.

View Article and Find Full Text PDF

Identification of a Hidden, Highly Aggregation-Prone Intermediate of Full-Length TDP-43 That Triggers its Misfolding and Amyloid Aggregation.

Biochemistry

December 2024

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

In cells, TDP-43 is a crucial protein that can form harmful amyloid aggregates linked to fatal and incurable human neurodegenerative disorders. Normally, TDP-43 exists in a smaller soluble native state that prevents aggregation. However, aging and stress can destabilize this native state, leading to the formation of disease-causing amyloid aggregates via the formation of partially unfolded, high-energy intermediates with a greater tendency to aggregate.

View Article and Find Full Text PDF

Like all canonical PUF proteins, FBF-2 binds to specific RNAs via tripartite recognition motifs (TRMs). Here we report that an FBF-2 mutant protein that cannot bind to RNA, is nonetheless biologically active and maintains stem cells. This unexpected result challenges the conventional wisdom that RBPs must bind to RNAs to achieve biological activity.

View Article and Find Full Text PDF

Association between dietary fat intake and the risk of Alzheimer's disease: Mendelian randomisation study.

Br J Psychiatry

October 2024

Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China; and Chinese Institute for Brain Research, Beijing, China.

Background: Observational studies have shown a controversial relationship between dietary fat intake and Alzheimer's disease, and the causal effects are unclear.

Aims: To assess the causal effects of total fat, saturated fat and polyunsaturated fat (PUF) intakes on the risk of Alzheimer's disease.

Method: A two-sample Mendelian randomisation analysis was performed using genome-wide association study summary statistics on different types of fat intake from UK Biobank ( = 51 413) and on late-onset Alzheimer's disease (LOAD; 4282 cases, = 307 112) and all forms of Alzheimer's disease (6281 cases, = 309 154) from the FinnGen consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!