A superlattice (SL) is an artificial crystal in which alternating nanometre-thick layers of two or more different semiconductor materials provide a periodic potential for conduction electrons. Strong magnetic and electric fields applied to this type of structure provide a means of exploring novel regimes of electron dynamics. The applied fields lower the dimensionality of the electronic states and lead to qualitative changes in the electronic conduction. This discovery is of fundamental interest and highly relevant to the properties of other low-dimensional conductors, such as nanowires and quantum dot SLs, which are presently attracting the attention of the physics and device communities. In addition, a rare type of chaotic electron dynamics, called non-Kolmogorov-Arnold-Moser (KAM) chaotic motion, which has been theoretically studied for several decades, is observed experimentally in SLs. The onset of chaos at discrete values of the applied electric and magnetic fields is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns in phase space. Therefore, non-KAM chaos could provide a new mechanism for controlling the electrical conductivity of the electronic devices with extreme sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2006.1886 | DOI Listing |
Nanoscale
January 2025
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.
Based on the molecular dynamics (AIMD), the temperature and velocity statistics of diatomic semiconductors were proposed to be classified by atomic species. The phase differences resulting from lattice vibrations of different atoms indicated the presence of anharmonicity at finite atomic temperatures. To further explore the electronic properties, the effect of temperature on electrostatic potential field vibrations in semiconductors was studied, and the concept of electrostatic potential oscillation (EPO) at finite atomic temperature was introduced.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School of Pharmacy, Shanghai Jiaotong University, Shanghai, China.
Objective: The aim of this study was to investigate the effect of curcumin nanocrystals (Cur-NCs) on ferroptosis in high-glucose (HG)-induced HK-2 cells and streptozotocin (STZ)-induced diabetic nephropathy model (DN) rats. The purpose is to determine whether Cur NCs can become a promising treatment option for diabetes nephropathy by reducing ferroptosis.
Methods: Cur-NCs were prepared using microfluidic technology and studied using dynamic light scattering and transmission electron microscopy.
Natl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!