Tissue distribution, elimination, and metabolism of sodium [36Cl]perchlorate in lactating goats.

J Agric Food Chem

United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Biosciences Research Laboratory, 1605 Albrecht Blvd., University Station, Fargo, North Dakota 58102-5674, USA.

Published: November 2006

Perchlorate has contaminated water sources throughout the United States but particularly in the arid Southwest, an area containing large numbers of people and few water sources. Recent studies have demonstrated that perchlorate is present in alfalfa and that perchlorate is secreted into the milk of cows. Studies in lactating cows have indicated that only a small portion of a perchlorate dose could be accounted for by elimination in milk, feces, or urine. It was hypothesized that the remainder of the perchlorate dose was excreted as chloride ion. The purpose of this study was to determine the fate and disposition of (36)Cl-perchlorate in lactating dairy goats. Two goats (60 kg) were each orally administered 3.5 mg (16.5 muCi) of (36)Cl-perchlorate, a dose selected to approximate environmental perchlorate exposure but that would allow for adequate detection of radioactive residues after a 72 h withdrawal period. Blood, milk, urine, and feces were collected incrementally until slaughter at 72 h. Total radioactive residue (TRR) and perchlorate concentrations were measured using radiochemical techniques and liquid chromatography mass spectrometry (LC-MS-MS). Peak blood levels of TRR occurred at 12 h ( approximately 195 ppb) postdose; peak levels of parent perchlorate, however, occurred after only 2 h, suggesting that perchlorate metabolism occurred rapidly in the rumen. The serum half-life of perchlorate was estimated to be 2.3 h. After 24 h, perchlorate was not detectable in blood serum but TRR remained elevated (160 ppb) through 72 h. Milk perchlorate levels peaked at 12 h (155 ppb) and were no longer detectable by 36 h, even though TRRs were readily detected through 72 h. Perchlorate was not detectable in skeletal muscle or liver at slaughter (72 h). Chlorite and chlorate were not detected in any matrix. The only radioactive residues observed were perchlorate and chloride ion. Bioavailability of perchlorate was poor in lactating goats, but the perchlorate that was absorbed intact was rapidly eliminated in milk and urine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf062033pDOI Listing

Publication Analysis

Top Keywords

perchlorate
16
lactating goats
8
goats perchlorate
8
water sources
8
perchlorate dose
8
chloride ion
8
radioactive residues
8
milk urine
8
perchlorate detectable
8
milk
5

Similar Publications

Miraculous Al/PDF Composites Using NF to Enhance the Energy Release of Al, Prepared Through an Efficient Method.

Nanomaterials (Basel)

December 2024

School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science and Technology, Nanjing 210094, China.

To enhance the energy release of Al powder in solid propellant, ploy (difluoroaminomethyl-3-methylethoxybutane) (PDF), which has difluoroamino (NF), was utilized to improve energy and promote combustion efficiency. In this study, Al with three distinct powder sizes (29 μm, 13 μm, and 1~3 μm) was coated with PDF using the solvent/non-solvent method, leading to the formation of Al/PDF composites. The morphology and characteristics of Al/PDF were then characterized.

View Article and Find Full Text PDF

One very unique feature of oxidorhenium(v) complexes is their dual catalytic activity in both reduction of stable oxyanions like perchlorate ClO and nitrate NO as well as epoxidation of olefins. In our ongoing research efforts, we were interested to study how an electron-withdrawing ligand would affect both these catalytic reactions. Hence, we synthesized the novel bidentate dimethyloxazoline-dichlorophenol ligand HL1 and synthesized oxidorhenium(v) complex [ReOCl(L1)] (1).

View Article and Find Full Text PDF

Synthesis, crystal structure and properties of μ-tetra-thio-anti-monato-bis-[(cyclam)zinc(II)] perchlorate 0.8-hydrate.

Acta Crystallogr E Crystallogr Commun

October 2024

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, D-24118 Kiel, Germany.

The reaction of Zn(ClO)·6HO with NaSbS·9HO in a water/aceto-nitrile mixture leads to the formation of the title compound, (μ-tetra-thio-anti-monato-κ :')bis-[(1,4,8,11-tetra-aza-cyclo-tetra-decane-κ )zinc(II)] perchlorate 0.8-hydrate, [Zn(SbS)(CHN)]ClO·0.8HO or [(Zn-cyclam)(SbS)][ClO]·0.

View Article and Find Full Text PDF

The title compound, a hydrate of 3,5-di-amino-1,2,4-triazole (DATA), CHN·HO, was synthesized in the presence of sodium perchlorate. The evaporation of HO from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the 2/ space group in the form of needle-shaped crystals with one DATA and one water mol-ecule in the asymmetric unit.

View Article and Find Full Text PDF

Four new and one previously reported silver 4,4'-vinylenedipyridine (Vpe) coordination polymers were tested as anion exchange materials to assess their potential for pollutant sequestration and compared to analogous silver 4,4'-bipyridine (bipy) coordination polymers. The materials were synthesized using nitrate, tetrafluoroborate, perchlorate, perrhenate, or chromate as the anion to produce cationic coordination polymers with solubilities ranging from 0.0137(7) to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!