A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. | LitMetric

Endosulfan, an endocrine disrupting chemical, is a widely used cyclodiene organochlorine pesticide worldwide, and it blocks neuronal GABA(A)-gated chloride channels in mammals and aquatic organisms. Endosulfan and its metabolites, such as endosulfan sulfate, are persistent in environments and are considered as toxic chemicals. For bioremediation of endosulfan, in this study, an attempt was made to isolate an endosulfan and endosulfan sulfate degrading bacterium from endosulfan-polluted agricultural soil. Through repetitive enrichment and successive subculture using endosulfan or endosulfan sulfate as the sole carbon source, a bacterium KS-2P was isolated. The KS-2P was identified as Pseudomonas sp. on the basis of the results of a 16S rDNA sequencing analysis and MIDI test. The degradation ratios for endosulfan or endosulfan sulfate in minimal medium containing endosulfan (23.5 microg mL(-1)) or endosulfan sulfate (21 microg mL(-1)) were 52% and 71%, respectively. Our results suggest that Pseudomonas sp. KS-2P has potential as a biocatalyst for endosulfan bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf061276eDOI Listing

Publication Analysis

Top Keywords

endosulfan sulfate
24
endosulfan endosulfan
16
endosulfan
15
microg ml-1
8
sulfate
6
isolation soil
4
soil bacterium
4
bacterium capable
4
capable biodegradation
4
biodegradation detoxification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!