A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superelasticity and nanofracture mechanics of ZnO nanohelices. | LitMetric

Superelasticity and nanofracture mechanics of ZnO nanohelices.

Nano Lett

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.

Published: November 2006

A superelasticity (shape memory) behavior has been discovered for the superlattice-structured ZnO nanohelices. By in situ manipulation using a nanoprobe, the nanohelix could elastically recover its shape after an extremely large axial stretching to a degree close to the theoretical limit, while suffering little residual plastic deformation. As a result, its spring constant can be increased continuously for up to 300-800%. A shape memory/recovery of the nanohelix was observed after subjecting to a buckling deformation. The superelastic deformation and fracture process of a nanohelix have been studied by transversely compressing under an AFM tip. A two-step mechanism is suggested for explaining the measured force-displacement curve. It is suggested that the small thickness and the superlattice structure of the nanohelix might be the keys for the observed superelasticity. The ZnO nanohelices may be a new category of shape-memory ceramic nanostructures, which could be of great interest for investigating nanoscale fracture process and application in MEMS and NEMS. The elastic recovery of the nanohelix after extremely large deformation makes it a potential structure for nanoscale elastic energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl061943iDOI Listing

Publication Analysis

Top Keywords

zno nanohelices
12
extremely large
8
fracture process
8
nanohelix
5
superelasticity nanofracture
4
nanofracture mechanics
4
mechanics zno
4
nanohelices superelasticity
4
superelasticity shape
4
shape memory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!