We describe here a nontoxic two-photon photodynamic nanoparticle platform and its cellular application. We demonstrate that the dye's potential toxicity can be circumvented by its permanent encapsulation into a biocompatible nanoparticle polymer matrix; this was examined by dye leaching experiments and confirmed by cell uptake experiments. Infrared two-photon nanoplatform phototoxicity was demonstrated for rat C6 glioma cells, while the controls showed no dark toxicity for these living cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577608 | PMC |
http://dx.doi.org/10.1021/nl0617179 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China. Electronic address:
Adv Healthc Mater
November 2024
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China.
A transdermal drug delivery cream, which is non-invasive and painless, containing a liposome-encapsulated Ru(II) complex (LipoRu) is created for the treatment of skin cancer. This formulation capitalizes on the synergistic antitumor effects of two-photon excited photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy. LipoRu exhibits effective tumor accumulation, efficient cellular uptake, pH-sensitive and infrared-accelerated release, and dual localization to the nucleus and mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!