Physicochemical properties of the covalently cross-linked tyrosine-histidine-Cu(B) (Tyr-His-Cu(B)) unit, which is a minimal model complex [M(II)-BIAIPBr]Br (M = Cu(II), Zn(II)) for the Cu(B) site of cytochrome c oxidase, were investigated with steady-state and transient absorption measurements, UV resonance Raman (UVRR) spectroscopy, X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The pH dependency of the absorption spectra reveals that the pK(a) of the phenolic hydroxyl is ca. 10 for the Cu(II) model complex (Cu(II)-BIAIP) in the ground state, which is similar to that of p-cresol (tyrosine), contrary to expectations. The bond between Cu(II) and nitrogen of cross-linked imidazole cleaves at pH 4.9. We have successfully obtained UVRR spectra of the phenoxyl radical form of BIAIPs and have assigned bands based on the previously reported isotope shifts of Im-Ph (2-(1-imidazoyl)-4-methylphenol) (Aki, M.; Ogura, T.; Naruta, Y.; Le, T. H.; Sato, T.; Kitagawa, T. J. Phys. Chem. A 2002, 106, 3436-3444) in combination with DFT calculations. The upshifts of the phenoxyl vibrational frequencies for 8a (C-C stretching), 7a' (C-O stretching), and 19a, and the Raman-intensity enhancements of 19b, 8b, and 14 modes indicate that UVRR spectra are highly sensitive to imidazole-phenol covalent linkage. Both transient absorption measurements and EPR spectra suggest that the Tyr-His-Cu(B) unit has only a minor effect on the electronic structure of the phenoxyl radical form, although our experimental results appear to indicate that the cross-linked Tyr radical exhibits no EPR. The role of the Tyr-His-Cu(B) unit in the enzyme is discussed in terms of the obtained spectroscopic parameters of the model complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja061507yDOI Listing

Publication Analysis

Top Keywords

phenoxyl radical
12
transient absorption
12
absorption measurements
12
dft calculations
12
tyr-his-cub unit
12
model complex
12
cub site
8
site cytochrome
8
cytochrome oxidase
8
steady-state transient
8

Similar Publications

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

Roles of iron (V) and iron (IV) species in ferrate-triggered oxidation of phenolic pollutants and their transformation induced by phenoxyl radical.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Ferrate is a promising oxidizing agent for water treatment. Understanding the reaction characteristics and transformation mechanism of high-valent intermediate irons [Fe(V) and Fe(IV)] remains challenging. Here, we systematically investigated the roles of Fe(VI), Fe(V), and Fe(IV) species for acetaminophen oxidation using reaction kinetics, products, and stoichiometries.

View Article and Find Full Text PDF

The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate.

Water Res

January 2025

Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:

High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).

View Article and Find Full Text PDF
Article Synopsis
  • A series of nickel(II) dihydride complexes were synthesized, using a bis(pyrazolate) ligand, leading to various compounds including μ-sulfido and μ-hydrosulfido complexes.
  • The μ-sulfido complex can be oxidized to form a bridging S-radical, characterized through various spectroscopic methods, showcasing its unique properties.
  • The study highlights the importance of these complexes in understanding proton-coupled electron transfer reactions, relevant to biological systems and catalysis.
View Article and Find Full Text PDF

Understanding Variations in Ferrate Detection through the ABTS Method in the Presence of Electron-Rich Organic Compounds.

Environ Sci Technol

August 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

Article Synopsis
  • Scientists have found that a common method for measuring a chemical called Fe(VI) can be messed up by other substances, making it hard to get accurate results.
  • When certain organic compounds are present, they can interfere with the tests, causing big errors in measurements.
  • A new method using Mn(II) and a different chemical called TMB helps to make measurements of Fe(VI) more accurate and faster, even in tricky conditions like dirty water.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!