Human chagasic serum contains antibodies capable of inhibiting Trypanosoma cruzi egress from tissue culture cells.

J Parasitol

Molecular and Cellular Biology Program, Tropical Disease Institute, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, USA.

Published: August 2005

Previous studies at our laboratory have shown that an antibody (antiegressin) present in the serum of chronically infected mice is capable of inhibiting the egress of Trypanosoma cruzi from infected BALB/c fibroblasts. We have used this in vitro system to evaluate whether human chagasic serum is also capable of inhibiting T. cruzi egress. BALB/c fibroblasts were infected with tissue culture-derived parasites. Five-percent solutions of the individual human serum samples in culture medium were added to the wells, and the number of parasites released was determined at day 5 after infection. The cells cultured with serum from infected individuals released between 37% and 72% fewer parasites than those cultured with control serum. A similar reduction in parasite egress resulted from incubation with the protein-A purified IgG fraction from 3 of these human samples. Immunocytochemical staining employing antineuraminidase antibodies supported the notion that the reduction in parasite levels is due to inhibition at the point of parasite egress. These results indicate that human serum of individuals infected with T. cruzi is capable of inhibiting release of the parasite from infected tissue culture cells and that the phenomenon of egress-inhibition may be relevant during infection of human subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1645/GE-429R.1DOI Listing

Publication Analysis

Top Keywords

capable inhibiting
16
human chagasic
8
chagasic serum
8
trypanosoma cruzi
8
cruzi egress
8
tissue culture
8
culture cells
8
balb/c fibroblasts
8
infected tissue
8
human serum
8

Similar Publications

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Engineered extracellular vesicles for TGF-β encapsulation as a therapeutic strategy against LPS-induced systemic inflammation.

Int Immunopharmacol

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.

View Article and Find Full Text PDF

Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

The genus (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!