Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp.

Environ Toxicol Chem

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.

Published: November 2006

Degradation of pyrene (PYR) alone and in the presence of phenanthrene or fluoranthene by Mycobacterium sp. strain A1-PYR isolated from mangrove sediments was investigated. When PYR was the only polycyclic aromatic hydrocarbon compound and the sole carbon source, only 33% of the added PYR was slowly degraded during 7 d of incubation. Seven metabolites were obtained, including four-ring metabolites (monohydroxypyrene and three different dihydroxypyrenes) and three-ring metabolites (dihydroxyphenanthrene, 4-phenanthrene-carboxylic acid, and 4-phenanthrol), of which more four-ring metabolites accumulated compared with three-ring metabolites. To our knowledge, this is the first report in which PYR was initially attacked by Mycobacterium sp. to form three different dihydroxypyrenes. Pyrene degradation was significantly stimulated when mixed with phenanthrene or fluoranthene. In the presence of fluoranthene, PYR was rapidly degraded (up to 57%), and significant amounts of dihydroxypyrene were formed within 3 d of incubation, followed by a period of minimal PYR degradation from 3 to 7 d with disappearance of four-ring metabolites and accumulation of three-ring metabolites. In contrast, PYR was removed completely, and little evidence of metabolites was detected in the presence of phenanthrene. These results showed that PYR was degraded to a larger extent when mixed with another polycyclic aromatic hydrocarbon concomitant with a higher turnover of PYR metabolites. The induction of complex enzyme systems and increase in biomass possibly affected the transformation of PYR metabolites in the mixture with phenanthrene or fluoranthene.

Download full-text PDF

Source
http://dx.doi.org/10.1897/06-042r.1DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
12
aromatic hydrocarbon
12
phenanthrene fluoranthene
12
four-ring metabolites
12
three-ring metabolites
12
pyr
10
metabolites
10
degradation pyrene
8
presence phenanthrene
8
three dihydroxypyrenes
8

Similar Publications

A solvent-free, thermal extraction method for analysis of polycyclic aromatic hydrocarbons (PAHs) in gas phase airborne samples was developed. A fully automated thermal desorber (TD) coupled with highly selective and sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to determine the concentration of trace level PAHs. Air sampling was conducted to tune the sampling and analytical conditions.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, detected even in remote regions such as the Antarctic, Arctic, and Tibetan Plateau. Thus, understanding their biodegradation processes at low temperatures is crucial. Therefore, the potential of fungal strains from the Antarctic to biodegrade PAHs was explored.

View Article and Find Full Text PDF

The effect of sub-boiling temperatures on mass transfer from former manufactured gas plant residuals.

J Contam Hydrol

January 2025

BCEG Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.

The dissolution of polycyclic aromatic hydrocarbons (PAHs) from coal tar at former manufactured gas plant (FMGP) sites is a long-term threat to groundwater quality. The dissolution rate is often limited by an increase in the viscosity of the non-aqueous phase liquid (NAPL) as the lower molecular weight compounds are depleted over time, and this slow mass transfer prevents the effective application of remediation technologies that rely on NAPL-to-water mass transfer to remove or degrade mass. Increasing subsurface temperatures has the potential to increase mass transfer at FMGP sites by increasing PAH solubility and reducing NAPL viscosity.

View Article and Find Full Text PDF

This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.

View Article and Find Full Text PDF

Ru(II)-Based Multitopic Hosts for Fullerene Binding: Impact of the Anion in the Recognition Process.

Inorg Chem

January 2025

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

The development of multitopic hosts for fullerene recognition based on nonplanar corannulene (CH) structures presents challenges, primarily due to the requirement for synergistic interactions with multiple units of this polycyclic aromatic hydrocarbon. Moreover, increasing the number of corannulene groups in a single chemical structure while avoiding the cost of increasing flexibility has been scarcely explored. Herein, we report the synthesis of a family of multitopic Ru(II)-polypyridyl complexes bearing up to six units of corannulene arranged by pairs, offering a total of three molecular tweezers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!