Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The major drawback to quantitative perfusion imaging using arterial spin labeling (ASL) techniques is the need to acquire two images (tag and control), which must be subtracted in order to obtain a perfusion-weighted image. This can potentially result in misregistration artifacts, especially in lung imaging, due to varying lung inflation levels in different breath-holds. In this work a double inversion recovery (DIR) imaging technique that yields perfusion-weighted images of the human lung in a single shot is presented. This technique ensures the complete suppression of background tissue while it preserves signal from the blood. Furthermore, the perfusion-weighted images and an additional (independent) acquired reference scan can be used to obtain quantitative perfusion information from the lungs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.21091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!