AI Article Synopsis

  • Neuroblastomas are the most common tumors outside the brain in children and show diverse behaviors linked to genetic changes.
  • Radiation therapy is a key treatment for high-risk neuroblastomas, and this study explored how it affects the behavior of these cancer cells and their impact on surrounding blood vessel cells.
  • Irradiated neuroblastoma cells displayed increased migration, invasion, and the expression of proangiogenic factors like MMP-9, uPA, and VEGF, which could enhance blood vessel growth and contribute to tumor spread.

Article Abstract

Neuroblastomas are the most common extra-cranial tumors of childhood and well known for their heterogeneous clinical behavior associated with certain genetic aberrations. Radiation therapy is an important modality for the treatment of high-risk neuroblastomas. In this study, we investigated whether ionizing irradiation modulate the migration and invasiveness of human neuroblastoma cells and expression of proangiogenic molecules known to be involved in tumor progression and metastasis. Irradiation of neuroblastoma cells resulted in increased migration and invasion as measured by spheroid migration and matrigel invasion assay respectively. Zymographic analysis revealed an increase in enzyme activity of MMP-9 and uPA in conditioned medium of irradiated neuroblastoma cells compared with non-irradiated cells. An increase in VEGF levels was also found in lysates of irradiated neuroblastoma cells. The up-regulation of uPA, MMP-9 and VEGF transcripts was also confirmed by RT-PCR analysis. Next, we examined the irradiated tumor cell-mediated modulation of endothelial cell behavior. Conditioned media from irradiated neuroblastoma cells enhanced capillary-like structure formation of microvascular endothelial cells. In a coculture system, irradiation of neuroblastoma cells enhanced endothelial cell invasiveness through Matrigel matrix. Endothelial cells treated with irradiated tumor cell conditioned medium were also analyzed for expression of uPA, MMP-9 and VEGF and compared to cells treated with non-irradiated tumor cell conditioned medium. These findings suggest that the irradiation effects of tumor cells could influence endothelial angiogenesis present in non-irradiated fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441915PMC

Publication Analysis

Top Keywords

neuroblastoma cells
28
cells
13
endothelial cells
12
conditioned medium
12
irradiated neuroblastoma
12
microvascular endothelial
8
irradiation neuroblastoma
8
upa mmp-9
8
mmp-9 vegf
8
irradiated tumor
8

Similar Publications

Retinal Protection of New Nutraceutical Formulation.

Pharmaceutics

January 2025

Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.

Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.

View Article and Find Full Text PDF

: Neuroblastoma is a highly aggressive pediatric cancer that arises from immature nerve cells and exhibits a broad spectrum of clinical presentations. While low- and intermediate-risk neuroblastomas often have favorable outcomes, high-risk neuroblastomas are associated with poor prognosis and significant treatment challenges. The complex genetic networks driving these high-risk cases remain poorly understood.

View Article and Find Full Text PDF

The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells.

View Article and Find Full Text PDF

Oxidative stress is universal to all cell types, including cancer. It is elicited by a surplus of reactive oxygen species (ROS) or a reduced cellular ability to defend against those. At low levels (oxidative eustress), this induces altered cellular signaling, while at higher levels (oxidative distress), cellular toxicity and non-specific redox signaling become apparent.

View Article and Find Full Text PDF

Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!