Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Although numerous signaling pathways are known to be activated in experimental cardiac hypertrophy, the molecular basis of the hypertrophic response inherent in human heart diseases remains largely unknown. Integrin-linked kinase (ILK) is a multifunctional protein kinase that physically links beta-integrins with the actin cytoskeleton, suggesting a potential mechanoreceptor role.
Methods And Results: Here, we show a marked increase in ILK protein levels in hypertrophic ventricles of patients with congenital and acquired outflow tract obstruction. This increase in ILK was associated with activation of the Rho family guanine triphosphatases, Rac1 and Cdc42, and known hypertrophic signaling kinases, including extracellular signal-related kinases (ERK1/2) and p70 S6 kinase. Transgenic mice with cardiac-specific expression of a constitutively active ILK (ILK(S343D)) or wild-type ILK (ILK(WT)) exhibited a compensated ventricular hypertrophic phenotype and displayed an activation profile of guanine triphosphatases and downstream protein kinases concordant with that seen in human hypertrophy. In contrast, transgenic mice with cardiomyocyte-restricted expression of a kinase-inactive ILK (ILK(R211A)) were unable to mount a compensatory hypertrophic response to angiotensin II in vivo.
Conclusions: Taken together, these results identify ILK-regulated signaling as a broadly adaptive hypertrophic response mechanism relevant to a wide range of clinical heart disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.642330 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!