Previous studies pointed to the importance of leucine residues in the binding of mitochondrial leader sequences to Tom20, an outer membrane protein translocator that initially binds the leader during import. A bacteria two-hybrid assay was here employed to determine if this could be an alternative way to investigate the binding of leader to the receptor. Leucine to alanine and arginine to glutamine mutations were made in the leader sequence from rat liver aldehyde dehydrogenase (pALDH). The leucine residues in the C-terminal of pALDH leader were found to be essential for TOM20 binding. The hydrophobic residues of another mitochondrial leader F1beta-ATPase that were important for Tom20 binding were found at the C-terminus of the leader. In contrast, it was the leucines in the N-terminus of the leader of ornithine transcarbamylase that were essential for binding. Modeling the peptides to the structure of Tom20 showed that the hydrophobic residues from the three proteins could all fit into the hydrophobic binding pocket. The mutants of pALDH that did not bind to Tom20 were still imported in vivo in transformed HeLa cells or in vitro into isolated mitochondria. In contrast, the mutant from pOTC was imported less well ( approximately 50%) while the mutant from F1beta-ATPase was not imported to any measurable extent. Binding to Tom20 might not be a prerequisite for import; however, it also is possible that import can occur even if binding to a receptor component is poor, so long as the leader binds tightly to another component of the translocator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242433PMC
http://dx.doi.org/10.1110/ps.062462006DOI Listing

Publication Analysis

Top Keywords

mitochondrial leader
12
leader
10
binding
9
binding mitochondrial
8
leader sequences
8
tom20
8
sequences tom20
8
bind tom20
8
tom20 imported
8
leucine residues
8

Similar Publications

Ginsenoside Rd-Loaded Antioxidant Polymersomes to Regulate Mitochondrial Homeostasis for Bone Defect Healing in Periodontitis.

Adv Healthc Mater

December 2024

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.

Periodontitis is the leading cause of tooth loss in adults. Initially triggered by bacterial infection, it is characterized by subsequent dysregulation of mitochondrial homeostasis, leading to ongoing loss of periodontal tissue. Mitophagic flux, a critical physiological mechanism for maintaining mitochondrial homeostasis, is compromised in periodontitis.

View Article and Find Full Text PDF

Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway.

Mol Med

December 2024

Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.

Background: Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI.

View Article and Find Full Text PDF

Allotopic expression refers to the artificial relocation of an organellar gene to the nucleus. Subunit 2 (Cox2) of cytochrome c oxidase, a subunit with two transmembrane domains (TMS1 and TMS2) residing in the inner mitochondrial membrane with a Nout-Cout topology, is typically encoded in the mitochondrial cox2 gene. In the yeast Saccharomyces cerevisiae, the cox2 gene can be allotopically expressed in the nucleus, yielding a functional protein that restores respiratory growth to a Δcox2 null mutant.

View Article and Find Full Text PDF

The anticancer effect of metformin targets VDAC1 via ER-mitochondria interactions-mediated autophagy in HCC.

Exp Mol Med

December 2024

Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.

Metformin (MetF) is used worldwide as a first-line therapy for type 2 diabetes. Recently, interest in the pleiotropic effects of MetF, such as its anticancer and antiaging properties, has increased. However, the molecular target of MetF and the detailed mechanism underlying its ability to inhibit cell growth through autophagy induction remain incompletely understood.

View Article and Find Full Text PDF

Results of artificial insemination (AI) are affected by changes in sperm quality and the function throughout collection and preservation procedures. Proteome and metabolome alterations of sperm treated with the different procedures in goat, however, aren't fully understood. To this end, we sought to investigate the impacts of rectal probe electrostimulation (EE) and artificial vagina (AV) semen collection methods on the quality and the cryotolerance of goat sperm, with additional focus on proteomic and metabolomic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!