Mutations in presenilins are the major cause of familial Alzheimer disease, but the precise pathogenic mechanism by which presenilin (PS) mutations cause synaptic dysfunction leading to memory loss and neurodegeneration remains unclear. Using autaptic hippocampal cultures from transgenic mice expressing human PS1 with the A246E mutation, we demonstrate that mutant PS1 significantly depressed the amplitude of evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptor-mediated synaptic currents. Analysis of the spontaneous miniature synaptic activity revealed a lower frequency of miniature currents but normal miniature amplitude. Both alterations could be rescued by the application of a gamma-secretase blocker. On the other hand, the application of synthetic soluble Abeta42 in wild-type neurons induced the PS1 mutant phenotype on synaptic strength. Together, these findings strongly suggest that the expression of mutant PS1 in cultured neurons depresses synaptic transmission by causing a physical reduction in the number of synapses. This hypothesis is consistent with morphometic and semiquantitative immunohistochemical analysis, revealing a decrease in synaptophysin-positive puncta in PS1 mutant hippocampal neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M605066200DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
8
hippocampal neurons
8
mutant ps1
8
ps1 mutant
8
synaptic
6
mutant
5
ps1
5
mutant presenilin
4
presenilin alters
4
alters synaptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!