Vitis vinifera L. berries are non-climacteric fruits that exhibit a double-sigmoid growth pattern, and at the point known as 'veraison', which is just before the beginning of the second period of rapid fruit growth, these berries undergo several abrupt physiological changes. Cell pressure probe was used to examine the in situ turgor (P) of cells in the mesocarp during berry development and in response to plant water deficits. Initial tests comparing attached and detached berries demonstrated that cell P was stable for up to 48 h after detachment from the vine, provided that water loss from the berry was prevented. Cell P at pre-dawn was on the order of 0.25 MPa pre-veraison (PreV) and was reduced by an order of magnitude to 0.02 MPa post veraison (PostV). Cell P declined slightly but significantly with depth from the berry surface PreV, but not PostV. When water was withheld from potted vines, cell P declined about 0.2 Mpa, as pre-dawn vine water potential declined about 0.6 MPa over 12 d, whereas cell P was completely insensitive to a 1.10 MPa decrease in pre-dawn vine water potential after veraison. Rewatering of stressed plants also resulted in a 24 h recovery of cell P before, but not after veraison. The substantial decline in cell P around veraison is consistent with the decline in berry firmness that is known to occur at this time, and the PostV insensitivity of P to changes in vine water status is consistent with current hypotheses that the PostV berry is hydraulically isolated from the vine. The fact that a measurable P of about 0.02 MPa and typical cell hydraulic/osmotic behaviour were exhibited in PostV berries, however, indicates that cell membranes remain intact after veraison, contrary to many current hypotheses that veraison is associated with a general loss of membrane function and cellular compartmentation in the grape berry. We hypothesize that cell P is low in the PostV berry, and possibly other fleshy fruits, because of the presence of regulated quantities of apoplastic solutes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2006.01496.xDOI Listing

Publication Analysis

Top Keywords

cell
12
vine water
12
vitis vinifera
8
vinifera berries
8
development response
8
response plant
8
plant water
8
water deficits
8
002 mpa
8
cell declined
8

Similar Publications

Outcomes With Radiation Therapy as Primary Treatment for Unresectable Cutaneous Head and Neck Squamous Cell Carcinoma.

Clin Oncol (R Coll Radiol)

December 2024

Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:

Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.

View Article and Find Full Text PDF

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!