Murine embryonic stem (mES) cells can proliferate independently of the presence of growth factors in the medium. It is yet unknown what intrinsic activity triggers cell cycle events in mES cells. Here we investigated the contribution of the PI3-kinase cascade to autonomous proliferation of mES cell using PI3-kinase inhibitors wortmannin and LY294002. Wortmannin displays a weaker inhibitory effect on phosphorylation of PI3-kinase pathway target PKB as compared with LY294002, and does not downregulate mES cells proliferation, while LY294002 causes a strong decrease in the share of cells in S-phase and accumulation of cells in G1 phase. Both inhibitors cause significant decrease in cyclin D1 amount. The treatment with LY294002, rather than with wortmannin results in a decrease of cyclin E amount and cyclin E-assossiated kinase activity. In mES cells, inactivation of PI3-kinase-dependent pathway and G1 arrest are not accompanied by induction of p27kip 1 transcription and accumulation of this inhibitor of cyclin-cdk complexes at the protein level, implying that these events accomplished by some p27kip 1-independent mechanism. Both LY294002 and wortmannin cause apoptotic death of mES cells and downregulate the growth of population. Thus, inactivation of PI3-kinase in mES cells may lead to apoptosis rather than to cell cycle arrest.
Download full-text PDF |
Source |
---|
ChemMedChem
December 2024
Uniwersytet Jagielloński Collegium Medicum, Department of Medicinal Chemistry, POLAND.
This study aimed to design new hybrid compounds with imidazolidin-2,4-dione and morpholine rings as broad spectrum anticonvulsants. To achieve this goal, all compounds were evaluated in animal seizure models, namely the maximal electroshock (MES), the subcutaneous pentylenetetrazole (scPTZ), and selected in the 6 Hz (32 mA) tests. The most promising compound, 5-isopropyl-3-(morpholinomethyl)-5-phenylimidazolidine-2,4-dione (19), demonstrated broader anticonvulsant activity than phenytoin or levetiracetam, with ED50 of 26.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.
View Article and Find Full Text PDFCell Biosci
December 2024
Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
The inherent heterogeneity of tumor cells impedes the development of targeted therapies for specific glioblastoma (GBM) subtypes. This study aims to investigate the mesenchymal subtype of GBM to uncover detailed characteristics, potential therapeutic strategies, and improve precision treatment for GBM patients. We integrated single-cell RNA sequencing (scRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and bulk RNA sequencing datasets to identify core gene modules, candidate therapeutic drugs, and key transcription factors specific to mesenchymal subtype GBM tumor cells which we validated in vitro and human samples.
View Article and Find Full Text PDFiScience
December 2024
Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden.
Neuro Oncol
December 2024
Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.
Background: Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!