Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the context of surface plasmon resonance (SPR) kinetic biochips, it is important to model the SPR phenomenon (i.e., extinction of reflectivity) toward biochip design and optimization. The Rouard approach that models reflectivity off a thin-film stack is shown to be extendable to any number of absorbing layers with no added complexity. Using the generalized Rouard method, the effect of SPR is simulated as a function of the wavelength for various metal thicknesses. Given an optimal metal thickness, the dependence of SPR on the angle of incidence and wavelength is also demonstrated. Such a model constitutes a potential basis for the efficient design and optimization of multidimensional sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.45.008419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!