Inflammation is an important factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease or multiple sclerosis, and during microbial infections of the nervous system. Glial cells were thought to be the main contributor for cytokine and chemokine production and Toll-like receptor (TLR) expression in the brain. Here, we report that human neurons express TLR-3, a major receptor in virus-mediated innate immune response. We established that these cells can mount a strong inflammatory response characterized by the expression of inflammatory cytokines (TNF-alpha, IL-6), chemokines (CCL-5 and CXCL-10), and antiviral molecules (2'5'OAS and IFN-beta) after treatment with dsRNA - a by-product of viral infection and ligand of TLR-3. This work firmly establishes that human neurons, in absence of glia, have the intrinsic machinery to trigger robust inflammatory, chemoattractive, and antiviral responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/JMN:29:3:185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!