Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants.

Appl Environ Microbiol

Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain.

Published: January 2007

The potential of Bacillus thuringiensis Cry proteins to control the grape pest Lobesia botrana was explored by testing first-instar larvae with Cry proteins belonging to the Cry1, Cry2, and Cry9 groups selected for their documented activities against Lepidoptera. Cry9Ca, a toxin from B. thuringiensis, was the protein most toxic to L. botrana larvae, followed in decreasing order by Cry2Ab, Cry1Ab, Cry2Aa, and Cry1Ia7, with 50% lethal concentration values of 0.09, 0.1, 1.4, 3.2, and 8.5 microg/ml of diet, respectively. In contrast, Cry1Fa and Cry1JA were not active at the assayed concentration (100 microg/ml). In vitro binding and competition experiments showed that none of the toxins tested (Cry1Ia, Cry2Aa, Cry2Ab, and Cry9C) shared binding sites with Cry1Ab. We conclude that either Cry1Ia or Cry9C could be used in combination with Cry1Ab to control this pest, either as the active components of B. thuringiensis sprays or expressed together in transgenic plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797137PMC
http://dx.doi.org/10.1128/AEM.01511-06DOI Listing

Publication Analysis

Top Keywords

potential bacillus
8
bacillus thuringiensis
8
lobesia botrana
8
cry proteins
8
thuringiensis
4
thuringiensis toxin
4
toxin reservoir
4
reservoir control
4
control lobesia
4
botrana lepidoptera
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!