A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. | LitMetric

Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach.

Appl Environ Microbiol

Institute of Chemical Engineering, Department for Applied Biochemistry and Gene Technology, Vienna University of Technology, Getreidemarkt 166-169, 1060 Vienna, Austria.

Published: January 2007

The Danube River is the second longest river in Europe, and its bacterial community composition has never been studied before over its entire length. In this study, bacterial community composition was determined by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified portions of the bacterial 16S rRNA gene from a total of 98 stations on the Danube River (73 stations) and its major tributaries (25 stations), covering a distance of 2,581 km. Shifts in the bacterial community composition were related to changes in environmental conditions found by comparison with physicochemical parameters (e.g., temperature and concentration of nutrients) and the concentration of chlorophyll a (Chl a). In total, 43 distinct DGGE bands were detected. Sequencing of selected bands revealed that the phylotypes were associated with typical freshwater bacteria. Apparent bacterial richness in the Danube varied between 18 and 32 bands and correlated positively with the concentration of P-PO(4) (r = 0.56) and negatively with Chl a (r = -0.52). An artificial neural network-based model explained 90% of the variation of apparent bacterial richness using the concentrations of N-NO(2) and P-PO(4) and the distance to the Black Sea as input parameters. Between the cities of Budapest and Belgrade, apparent bacterial richness was significantly lower than that of other regions of the river, and Chl a showed a pronounced peak. Generally, the bacterial community composition developed gradually; however, an abrupt and clear shift was detected in the section of the phytoplankton bloom. Large impoundments did not have a discernible effect on the bacterial community of the water column. In conclusion, the riverine bacterial community was largely influenced by intrinsic factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796958PMC
http://dx.doi.org/10.1128/AEM.01849-06DOI Listing

Publication Analysis

Top Keywords

bacterial community
28
community composition
20
danube river
12
apparent bacterial
12
bacterial richness
12
bacterial
11
community
7
composition
5
river
5
longitudinal changes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!