The PhoPR two-component system activates or represses Pho regulon genes to overcome a phosphate deficiency. The Pho signal transduction network is comprised of three two-component systems, PhoPR, ResDE, and Spo0A. Activated PhoP is required for expression of ResDE from the resA promoter, while ResD is essential for 80% of Pho induction, establishing a positive feedback loop between these two-component systems to amplify the signal received by the Pho system. The role of ResD in the Pho response is via production of terminal oxidases. Reduced quinones inhibit PhoR autophosphorylation in vitro, and it was proposed that the expression of terminal oxidases leads to oxidation of the quinone pool, thereby relieving the inhibition. We show here that the reducing environment generated by dithiothreitol (DTT) in vivo inhibited Pho induction in a PhoR-dependent manner, which is in agreement with our previous in vitro data. A strain containing a PhoR variant, PhoR(C303A), exhibited reduced Pho induction and remained sensitive to inhibition by DTT, suggesting that the mechanisms for Pho reduction via PhoR(C303A) and DTT are different. PhoR and PhoR(C303A) were similar with regard to cellular concentration, limited proteolysis patterns, rate of autophosphorylation, stability of PhoR approximately P, and inhibition of autophosphorylation by DTT. Phosphotransfer between PhoR approximately P or PhoR(C303A) approximately P and PhoP occurred rapidly; most label from PhoR approximately P was transferred to PhoP, but only 10% of the label from PhoR(C303A) approximately P was associated with PhoP, while 90% was released as inorganic phosphate. No difference in PhoP approximately P or PhoR autophosphatase activity was observed between PhoR and PhoR(C303A) that would explain the release of inorganic phosphate. Our data are consistent with a role for PhoR(C303) in PhoR activity via stabilization of the phosphoryl-protein intermediate(s) during phosphotransfer from PhoR approximately P to PhoP, which is stabilization that is required for efficient production of PhoP approximately P.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797398 | PMC |
http://dx.doi.org/10.1128/JB.01205-06 | DOI Listing |
mBio
July 2024
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes , , and ) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP levels derepress the regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
May 2024
Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
J Biol Chem
March 2024
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. Electronic address:
Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2024
Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Symbiotic interactions play a vital role in maintaining the phosphate (Pi) nutrient status of host plants and providing resilience during biotic and abiotic stresses. Serendipita indica, a mycorrhiza-like fungus, supports plant growth by transporting Pi to the plant. Despite the competitive behaviour of arsenate (As) with Pi, the association with S.
View Article and Find Full Text PDFLaryngoscope
May 2024
Université Paris Cité, Service d'Otorhinolaryngologie et de Chirurgie Cervico-Faciale HEGP, AP-HP, Paris, France.
Objectives: To document 10-year oncologic outcome of primary total laryngectomy (TL) for patients with cT3-4M0 endolaryngeal squamous cell carcinoma (SCC).
Study Design: Observational inception cohort of 531 patients with isolated untreated endolaryngeal cT3-4M0 SCC review over 40 years using STROBE guideline. 94% of patients were followed until death or for a minimum of 10 years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!